$$\require{AMScd}$$ $$\DeclareMathOperator{\mcA}{\mathcal A}$$ $$\DeclareMathOperator{\AA}{\mathbb A}$$ $$\DeclareMathOperator{\Alt}{Alt}$$ $$\DeclareMathOperator{\Arb}{Arb}$$ $$\DeclareMathOperator{\bArb}{\overline{Arb}}$$ $$\DeclareMathOperator{\Aut}{Aut}$$ $$\DeclareMathOperator{\mcC}{\mathcal C}$$ $$\DeclareMathOperator{\CC}{\mathbb C}$$ $$\DeclareMathOperator{\cchar}{char}$$ $$\DeclareMathOperator{\co}{co}$$ $$\DeclareMathOperator{\Col}{Col}$$ $$\DeclareMathOperator{\Gal}{Gal}$$ $$\DeclareMathOperator{\GG}{\mathbb G}$$ $$\DeclareMathOperator{\GL}{GL}$$ $$\DeclareMathOperator{\mcH}{\mathcal H}$$ $$\DeclareMathOperator{\haus}{haus}$$ $$\DeclareMathOperator{\mcI}{\mathcal I}$$ $$\DeclareMathOperator{\id}{id}$$ $$\DeclareMathOperator{\Id}{Id}$$ $$\DeclareMathOperator{\img}{img}$$ $$\DeclareMathOperator{\IMG}{IMG}$$ $$\DeclareMathOperator{\bIMG}{\overline{IMG}}$$ $$\DeclareMathOperator{\barK}{\overline{K}}$$ $$\DeclareMathOperator{\Mon}{Mon}$$ $$\DeclareMathOperator{\bMon}{\overline{Mon}}$$ $$\DeclareMathOperator{\mcM}{\mathcal M}$$ $$\DeclareMathOperator{\mcO}{\mathcal O}$$ $$\DeclareMathOperator{\Out}{Out}$$ $$\DeclareMathOperator{\mcP}{\mathcal P}$$ $$\DeclareMathOperator{\ncl}{ncl}$$ $$\DeclareMathOperator{\NN}{\mathbb N}$$ $$\DeclareMathOperator{\NP}{NP}$$ $$\DeclareMathOperator{\ord}{ord}$$ $$\DeclareMathOperator{\PP}{\mathbb P}$$ $$\DeclareMathOperator{\PGL}{PGL}$$ $$\DeclareMathOperator{\piet}{\pi_1^{\acute{e}t}}$$ $$\DeclareMathOperator{\QQ}{\mathbb Q}$$ $$\DeclareMathOperator{\mcQ}{\mathcal Q}$$ $$\DeclareMathOperator{\rad}{rad}$$ $$\DeclareMathOperator{\mcS}{\mathcal S}$$ $$\DeclareMathOperator{\sgn}{sgn}$$ $$\DeclareMathOperator{\Spec}{Spec}$$ $$\DeclareMathOperator{\Stab}{Stab}$$ $$\DeclareMathOperator{\Sym}{Sym}$$ $$\DeclareMathOperator{\mcW}{\mathcal W}$$ $$\DeclareMathOperator{\ZZ}{\mathbb Z}$$ $$\newcommand{\ab}{\textrm{ab}}$$ $$\newcommand{\cyc}{\textrm{cyc}}$$ $$\renewcommand{\epsilon}{\varepsilon}$$ $$\newcommand{\inv}{^{-1}}$$ $$\newcommand{\llangle}{\langle\hspace{-0.5em}\langle}$$ $$\newcommand{\normal}{\triangleleft}$$ $$\newcommand{\odometer}{\omega}$$ $$\newcommand{\Odometer}{\Omega}$$ $$\newcommand{\OK}{\mcO_K}$$ $$\newcommand{\pp}{\mathfrak p}$$ $$\newcommand\res{\!\!\mid\!\!}$$ $$\newcommand{\rrangle}{\rangle\hspace{-0.5em}\rangle}$$ $$\newcommand{\sep}{^{sep}}$$ $$\newcommand{\wh}{\widehat}$$

References

1.
2.
Adams O (2023) A dynamical analogue of sen’s theorem. Int Math Res Not 2023:7502–7540
3.
4.
Ahmad F, Benedetto RL, Cain J, Carroll G, Fang L (2022) The arithmetic basilica: A quadratic PCF arboreal galois group. J Number Theory 238:842–868
5.
Aitken W, Hajir F, Maire C (2005) Finitely ramified iterated extensions. Int Math Res Not 2005:855–880
6.
Aitken W, Hajir F, Maire C (2005) Finitely ramified iterated extensions. International Mathematics Research Notices 2005:855–880. doi: 10.1155/IMRN.2005.855
7.
Anderson J (2013) Bounds on the radius of the p-adic Mandelbrot set. Acta Arith 158:253–269
8.
Anderson J, Hamblen S, Poonen B, Walton L (2017) Local arboreal representations. International Mathematics Research Notices 2018:5974–5994. doi: 10.1093/imrn/rnx054
9.
Anderson J, Manes M, Tobin B (2020) Cubic post-critically finite polynomials defined over . In: Galbraith SD (ed) Proceedings of the fourteenth algorithmic number theory symposium
10.
Andrews J, Petsche C (2020) Abelian extensions in dynamical galois theory. Algebra and Number Theory 14:1981–1999. doi: 10.2140/ant.2020.14.1981
11.
12.
Bartholdi L, Grigorchuk RI, Šunić Z (2003) Branch groups. In: Handbook of algebra. Elsevier, pp 989–1112
13.
Bartholdi L, Nekrashevych V (2006) Thurston equivalence of topological polynomials. Acta Math 197:1–51
14.
Bartholdi L, Nekrashevych VV (2008) Iterated monodromy groups of quadratic polynomials, i. Groups Geom Dyn 2:309–336
15.
Benedetto R, Ingram P, Jones R, Levy A (2014) Attracting cycles in p -adic dynamics and height bounds for postcritically finite maps. Duke Mathematical Journal 13:2325–2356
16.
Benedetto R, Ingram P, Jones R, Manes M, Silverman JH, Tucker T (2019) Current trends and open problems in arithmetic dynamics. Bull Amer Math Soc 56:611–685
17.
Benedetto R, Juul J (2019) Odoni’s conjecture for number fields. Bulletin of the London Mathematical Society 2:237–250
18.
Benedetto RL, Faber X, Hutz B, Juul J, Yasufuku Y (2017) A large arboreal galois representation for a cubic postcritically finite polynomial. Res Number Theory 3:1–21
19.
Benedetto RL, Ghioca D, Juul J, Tucker TJ (2025) Specializations of iterated galois groups of PCF rational functions. Math Ann 1–20
20.
Berger L (2014) Lifting the field of norms. Journal de l’École polytechnique – Mathématiques 1:29–38
21.
Berger L (2016) Iterated extensions and relative lubin-tate groups. Annales des sciences mathématiques du Québec
22.
Bouw II, Ejder Ö, Karemaker V (2021) Dynamical belyi maps and arboreal galois groups. Manuscr Math 165:1–34
23.
Bridy A, Ingram P, Jones R, Juul J, Levy A, Manes M, Rubinstein-Salzedo S, Silverman JH (2017) Finite ramification for preimage fields of post-critically finite morphisms. Mathematical Research Letters 24:1633–1647. doi: 10.4310/MRL.2017.v24.n6.a3
24.
Bryden Cais JL Christopher Davis (2016) A characterization of strictly APF extensions. J Théor Nombres Bordeaux 28:417–430
25.
Cais B, Davis C (2014) Canonical cohen rings for norm fields. Int Math Res Not IMRN 5473–5517
26.
27.
Dittmann P, Kadets B (2022) Odoni’s conjecture on arboreal Galois representations is false. Proceedings of the American Mathematical Society 150:3335–3343. doi: 10.1090/proc/15920
28.
29.
Epstein A (2011) Integrality and rigidity for postcritically finite polynomials. Bulletin of the London Mathematical Society 44:39–46. doi: 10.1112/blms/bdr059
30.
Epstein A (2011) Integrality and rigidity for postcritically finite polynomials. Bull Lond Math Soc 44:39–46
31.
Ferraguti A, Ostafe A, Zannier U (2024) Cyclotomic and abelian points in backward orbits of rational functions. Advances in Mathematics 438. doi: 10.1016/j.aim.2023.109463
32.
Ferraguti A, Pagano C (2020) Constraining images of quadratic arboreal representations. International Mathematics Research Notices 2020:8486–8510. doi: 10.1093/imrn/rnaa243
33.
Fried M (1973) The field of definition of function fields and a problem in the reducibility of polynomials in two variables. Ill J Math 17:128–146
34.
Fried MD, Jarden M (2023) Field arithmetic, 4th ed. Springer
35.
Grigorchuk RI (2000) Just infinite branch groups. In: New horizons in pro-p groups. Springer, pp 121–179
36.
Grothendieck A, Raynaud M (1971) Revêtements Étales et groupe fondamental: Séminaire de géométrie algébrique du bois marie 1960/61 (SGA 1). Springer
37.
Hamblen S, Jones R (2024) Roots of unity and higher ramification in iterated extensions. Proc Amer Math Soc 152:4687–4702
38.
39.
Ingram P (2013) Arboreal Galois representations and uniformization of polynomial dynamics. Bulletin of the London Mathematical Society 45:301–308
40.
Jones R (2013) Galois representations from pre-image trees: An arboreal survey. Pub Math Besançon 107–136
41.
J.-P. Serre JT (1968) Good reduction of abelian varieties. The Annals of Mathematics 88:492–517
42.
43.
Kummer EE (1852) Über die ergänzungssätze zu den allgemeinen reciprocitätsgesetzen. J Reine Angew Math 44:93–146
44.
Looper N (2018) Dynamical Galois groups of trinomials and Odoni’s conjecture. Bulletin of the London Mathematical Society 51
45.
Lubin J (1994) Nonarchimedean dynamical systems. Compos Math 94:321–346
46.
Lubin J (2000) Formal flows on the non-archimedean open unit disk. Compositio Mathematica 124:123–136
47.
Lubin J (2012) Elementary analytic methods in higher ramification theory. Journal of Number Theory 133:983–999
48.
Malle G, Matzat BH (1999) Inverse galois theory, 1st ed. Springer
49.
Nekrashevych V (2005) Self-similar groups. American Mathematical Society
50.
Odoni RWK (1985) The galois theory of iterates and composites of polynomials. Proc London Math Soc 3:385–414
51.
Odoni RWK (1985) On the prime divisors of the sequence wn + 1 = 1 + w1wn. J Lond Math Soc 2:1–11
52.
Odoni RWK (1988) Realising wreath products of cyclic groups as galois groups. Mathematika 35:101–113
53.
Pilgrim KM (2000) Dessins d’enfants and hubbard trees. Ann Sci Éc Norm Supér 33:671–693
54.
55.
56.
57.
Robinson DJS (1996) A course in the theory of groups, 2nd ed. Springer
58.
Sen S (1972) Ramification in p-adic lie extensions. Invent Math 17:44–50
59.
Serre J-P (1995) Local fields. Springer-Verlag
60.
Silverman JH (1993) Integer points, Diophantine approximation, and iteration of rational maps. Duke Mathematical Journal 71
61.
62.
Specter J (2018) The crystalline period of a height one p-adic dynamical system over p. Transactions of the American Mathematical Society 370:3591–3608
63.
64.
Szamuely T (2009) Galois groups and fundamental groups. Cambridge University Press
65.
Tamagawa A (1997) The grothendieck conjecture for affine curves. Compositio Mathematica 109:135–197
66.
Wintenberger J-P (1983) Le corps des normes de certaines extensions infinies de corps locaux; applications. Ann Sci Éc Norm Supér 16:59–89