References
1.
2.
Adams O (2023) A dynamical analogue of sen’s
theorem. Int Math Res Not 2023:7502–7540
3.
Adams O, Hyde T (2025) Profinite iterated monodromy
groups of unicritical polynomials
4.
Ahmad F, Benedetto RL, Cain J, Carroll G, Fang
L (2022) The arithmetic basilica: A quadratic PCF arboreal galois group.
J Number Theory 238:842–868
5.
Aitken W, Hajir F, Maire C (2005) Finitely
ramified iterated extensions. Int Math Res Not 2005:855–880
6.
Aitken W, Hajir F, Maire C (2005) Finitely
ramified iterated extensions. International Mathematics Research Notices
2005:855–880. doi: 10.1155/IMRN.2005.855
7.
Anderson J (2013) Bounds on the radius of the
p-adic Mandelbrot
set. Acta Arith 158:253–269
8.
Anderson J, Hamblen S, Poonen B, Walton L
(2017) Local arboreal representations. International Mathematics
Research Notices 2018:5974–5994. doi: 10.1093/imrn/rnx054
9.
Anderson J, Manes M, Tobin B (2020) Cubic post-critically
finite polynomials defined over ℚ. In: Galbraith SD (ed)
Proceedings of the fourteenth algorithmic number theory symposium
10.
Andrews J, Petsche C (2020) Abelian extensions
in dynamical galois theory. Algebra and Number Theory 14:1981–1999. doi:
10.2140/ant.2020.14.1981
11.
Bartholdi L (2024) FR, computations
with functionally recursive groups
12.
Bartholdi L, Grigorchuk RI, Šunić Z (2003)
Branch groups. In: Handbook of algebra. Elsevier, pp 989–1112
13.
Bartholdi L, Nekrashevych V (2006) Thurston
equivalence of topological polynomials. Acta Math 197:1–51
14.
Bartholdi L, Nekrashevych VV (2008) Iterated
monodromy groups of quadratic polynomials, i. Groups Geom Dyn
2:309–336
15.
Benedetto R, Ingram P, Jones R, Levy A (2014)
Attracting cycles in p -adic
dynamics and height bounds for postcritically finite maps. Duke
Mathematical Journal 13:2325–2356
16.
Benedetto R, Ingram P, Jones R, Manes M,
Silverman JH, Tucker T (2019) Current trends and open problems in
arithmetic dynamics. Bull Amer Math Soc 56:611–685
17.
Benedetto R, Juul J (2019) Odoni’s conjecture
for number fields. Bulletin of the London Mathematical Society
2:237–250
18.
Benedetto RL, Faber X, Hutz B, Juul J, Yasufuku
Y (2017) A large arboreal galois representation for a cubic
postcritically finite polynomial. Res Number Theory 3:1–21
19.
Benedetto RL, Ghioca D, Juul J, Tucker TJ
(2025) Specializations of iterated galois groups of PCF rational
functions. Math Ann 1–20
20.
Berger L (2014) Lifting the field of norms.
Journal de l’École polytechnique –
Mathématiques 1:29–38
21.
Berger L (2016) Iterated extensions
and relative lubin-tate groups. Annales des sciences mathématiques
du Québec
22.
Bouw II, Ejder Ö, Karemaker V (2021) Dynamical
belyi maps and arboreal galois groups. Manuscr Math 165:1–34
23.
Bridy A, Ingram P, Jones R, Juul J, Levy A,
Manes M, Rubinstein-Salzedo S, Silverman JH (2017) Finite ramification
for preimage fields of post-critically finite morphisms. Mathematical
Research Letters 24:1633–1647. doi: 10.4310/MRL.2017.v24.n6.a3
24.
Bryden Cais JL Christopher Davis (2016) A
characterization of strictly APF extensions. J
Théor Nombres Bordeaux 28:417–430
25.
Cais B, Davis C (2014) Canonical cohen rings
for norm fields. Int Math Res Not IMRN 5473–5517
26.
Developers S (2019) SageMath, the
Sage Mathematics Software
System
27.
Dittmann P, Kadets B (2022) Odoni’s conjecture
on arboreal Galois representations is false. Proceedings of
the American Mathematical Society 150:3335–3343. doi: 10.1090/proc/15920
28.
29.
Epstein A (2011) Integrality and rigidity for
postcritically finite polynomials. Bulletin of the London Mathematical
Society 44:39–46. doi: 10.1112/blms/bdr059
30.
Epstein A (2011) Integrality and rigidity for
postcritically finite polynomials. Bull Lond Math Soc 44:39–46
31.
Ferraguti A, Ostafe A, Zannier U (2024)
Cyclotomic and abelian points in backward orbits of rational functions.
Advances in Mathematics 438. doi: 10.1016/j.aim.2023.109463
32.
Ferraguti A, Pagano C (2020) Constraining
images of quadratic arboreal representations. International Mathematics
Research Notices 2020:8486–8510. doi: 10.1093/imrn/rnaa243
33.
Fried M (1973) The field of definition of
function fields and a problem in the reducibility of polynomials in two
variables. Ill J Math 17:128–146
34.
Fried MD, Jarden M (2023) Field arithmetic, 4th
ed. Springer
35.
Grigorchuk RI (2000) Just infinite branch
groups. In: New horizons in pro-p groups. Springer, pp
121–179
36.
Grothendieck A, Raynaud M (1971)
Revêtements Étales et groupe fondamental:
Séminaire de géométrie
algébrique du bois marie 1960/61 (SGA 1). Springer
37.
Hamblen S, Jones R (2024) Roots of unity and
higher ramification in iterated extensions. Proc Amer Math Soc
152:4687–4702
38.
Hlushchanka M, Lukina O, Wardell D (2025) Profinite geometric iterated
monodromy groups of postcritically finite polynomials in degree
3
39.
Ingram P (2013) Arboreal Galois
representations and uniformization of polynomial dynamics. Bulletin of
the London Mathematical Society 45:301–308
40.
Jones R (2013) Galois representations from
pre-image trees: An arboreal survey. Pub Math Besançon 107–136
41.
J.-P. Serre JT (1968) Good reduction of abelian
varieties. The Annals of Mathematics 88:492–517
42.
König J, Neftin D, Rosenberg S (2024) Polynomial compositions with
large monodromy groups and applications to arithmetic dynamics
43.
Kummer EE (1852) Über die
ergänzungssätze zu den allgemeinen
reciprocitätsgesetzen. J Reine Angew Math 44:93–146
44.
Looper N (2018) Dynamical Galois
groups of trinomials and Odoni’s conjecture. Bulletin of
the London Mathematical Society 51
45.
Lubin J (1994) Nonarchimedean dynamical
systems. Compos Math 94:321–346
46.
Lubin J (2000) Formal flows on the
non-archimedean open unit disk. Compositio Mathematica 124:123–136
47.
Lubin J (2012) Elementary analytic methods in
higher ramification theory. Journal of Number Theory 133:983–999
48.
Malle G, Matzat BH (1999) Inverse galois
theory, 1st ed. Springer
49.
Nekrashevych V (2005) Self-similar groups.
American Mathematical Society
50.
Odoni RWK (1985) The galois theory of iterates
and composites of polynomials. Proc London Math Soc 3:385–414
51.
Odoni RWK (1985) On the prime divisors of the
sequence wn + 1 = 1 + w1…wn.
J Lond Math Soc 2:1–11
52.
Odoni RWK (1988) Realising wreath products of
cyclic groups as galois groups. Mathematika 35:101–113
53.
Pilgrim KM (2000) Dessins d’enfants and hubbard
trees. Ann Sci Éc Norm Supér 33:671–693
54.
55.
56.
57.
Robinson DJS (1996) A course in the theory of
groups, 2nd ed. Springer
58.
Sen
S (1972) Ramification in p-adic lie extensions. Invent Math
17:44–50
59.
Serre J-P (1995) Local fields.
Springer-Verlag
60.
Silverman JH (1993) Integer points,
Diophantine approximation, and iteration of rational maps.
Duke Mathematical Journal 71
61.
62.
Specter J (2018) The crystalline period of a
height one p-adic dynamical system over ℤp. Transactions
of the American Mathematical Society 370:3591–3608
63.
Stacks Project Authors Affineness of
complement of ramification locus
64.
Szamuely T (2009) Galois groups and fundamental
groups. Cambridge University Press
65.
Tamagawa A (1997) The grothendieck conjecture
for affine curves. Compositio Mathematica 109:135–197
66.
Wintenberger J-P (1983) Le corps des normes de
certaines extensions infinies de corps locaux; applications. Ann Sci
Éc Norm Supér 16:59–89