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Preface

This dissertation discusses the ramification-theoretic behavior of Galois representations attached

to dynamical systems over local fields, with applications to global fields. These arboreal represen-

tations are the dynamical counterparts to the Tate modules of abelian varieties, and one of the

primary motivations for this work is developing dynamical analogues to what is already known

about ramification for representations on the Tate module. In particular, we develop dynamical

analogues of Sen’s Theorem on the ramification filtration of Galois groups which are p-adic Lie

groups and the Néron-Ogg-Shafarevich criterion for the good reduction of an abelian variety, as

well as explore the extent to which the analogies fail. Additionally, we introduce “anabelian” dy-

namical representations on étale fundamental groups associated to dynamical systems

To be more precise, fix a field K, rational function f(x) ∈ K(x) and base point a ∈ K. To

construct the arboreal representation, form a graph of preimages of a by f(x) with edges according

to the action of f(x). This graph is typically a tree, hence the arboreal appellation. This essentially

coincides with the construction of the Tate module as systems of compatible inverse images of the

identity by the multiplication-by-ℓ map, but we lose the algebraic structure of the object on which

the absolute Galois group acts. Our anabelian representations come from a different incarnation of

the Tate module: the (big) Tate module is isomorphic as a Galois module to the étale fundamental

group of the abelian variety, and the Tate-module can be obtained by completing this group with

respect to the group endomorphism induced by [ℓ]. In a very similar way, we construct a geometric

object X (an infinitely punctured projective line) from f such that f : X → X is an étale en-

domorphism. Then the usual étale fundamental group functor induces a functor from dynamical
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systems with a marked fixed point to profinite groups with a distinguished endomorphism with a

Galois action. In a sense, these representations are more intrinsic to the dynamical system – the

choice of a marked fixed point (i.e. base point of the étale fundamental group) only changes the

group and representation by an inner automorphism, while the arboreal representations associated

to a single rational function vary enormously as the base point is moved, and there is not yet a

clear relationship between arboreal representations for the same function with different base points.

In fact, one surprising outcome of the results of this dissertation is that some the aspects of the

overall ramification behavior are independent of the base point, even if the representations are very

different.

The study of these “anarboreal” representations is at an earlier stage, and they are somewhat

more difficult to understand than arboreal representations. As we will see, these representations

more closely reflect the geometry of the dynamical system, and also enable the use of powerful ma-

chinery from algebraic and anabelian geometry. One of the secondary goals of this dissertation is to

serve as an introduction to these representations for dynamicists, and to provide a convincing test

case for the ideas by applying them to our dynamical version of the Néron-Ogg-Shafarevich criterion

and relating the structure of the anabelian representation to standard arboreal representations.

This thesis is based on published and submitted work of the author:

1. Mark O.-S. Sing (Mark A. Sweeney). A Dynamical Analogue of Sen’s Theorem. Int. Math.

Res. Not. IMRN, rnac070, March 2022.

2. Mark O.-S. Sing (Mark A. Sweeney). A Dynamical Analogue of the Criterion of Néron-

Ogg-Shafarevich. Preprint: https://arxiv.org/abs/2208.00359. July 2022, updated November

2022.
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Chapter 1

Introduction

In this dissertation, we state and prove dynamical analogues for two well-known results in arith-

metic geometry: the Nerón-Ogg-Shafarevich (NOS) criterion for good reduction (Chapter 4) and

Sen’s Theorem on higher ramification (Chapter 5). Both of these connect the ramification-theoretic

behavior of Galois representations to properties of the original object: the NOS criterion establishes

a link between good reduction and unramified representations, while Sen’s theorem shows that the

higher ramification filtration and Lie filtration associated to a Galois representation are closely re-

lated. We prove our dynamical NOS criterion by classifying, under mild restrictions the (infinitely)

ramified branch representations associated to a rational map, and we prove our dynamical analogue

of Sen’s theorem by explicitly calculating the Hasse-Herbrand function.

In addition, we introduce a new kind of dynamical Galois representation (Chapter 3). This con-

struction is also motivated by the Tate module, but viewed through an “anabelian” lens, and very

different in appearance from traditional arboreal representations, and in fact refines them. A much

greater amount of input from algebraic geometry (the étale fundamental group) is necessary to de-

fine these representations, and it is the author’s hope to convince the reader that these “anarboreal”

representations are worth this extra technical cost. To this end, we will discuss how anarboreal rep-

resentations seem to better detect geometric and arithmetic features of the dynamical systems from

which they originate, and apply them to our formulation of the dynamical Néron-Ogg-Shafarevich

criterion in Chapter 4.
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It is worth noting that a preliminary version of the material in Chapter 4 purely in terms of

arboreal representations was obtained without these ideas; the author then noticed the remarkable

similarity between this result and Tamagawa’s anabelian version of the Néron-Ogg-Shafarevich

criterion, a connection which then developed into our anarboreal representations. The introduction

of these ideas from anabelian geometry to the author’s dynamical considerations led to a slightly

stronger result and seems to better reveal the geometric features of the argument.

1.1 Background

Arithmetic dynamics is the study of dynamical systems from a number-theoretic perspective. The

typical object in this study is a dynamical system f : X → X, where X is a scheme and f

a morphism defined over a field K or ring R of number-theoretic interests, such as Q or Z or

even Qp. Typical questions might be about the distribution of prime divisors in orbits for f , or

about p-adic analytic behavior of the dynamical system. In the present work, we are interested

in certain Galois representations which can be attached to dynamical systems. Traditionally in

arithmetic dynamics, the Galois representations which one studies are the arboreal representations

(Definition 2.6) associated to a dynamical system with a marked point. These are typically viewed

as dynamical analogues of the Galois representations associated to the Tate modules of abelian

varieties.

Many guiding questions in arithmetic dynamics arise from or are inspired by analogies to well-

studied objects in arithmetic geometry. Our aim is to develop dynamical analogues of the Néron-

Ogg-Shafarevich (NOS) criterion and Sen’s theorem.
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The NOS criterion translates a geometric notion, good reduction, into more algebraic Galois-

theoretic property: the criterion tells us that an abelian variety over a p-adic local field has good

reduction at p if and only if the Galois action on the ℓ-adic Tate module is unramified for some

(all) ℓ ̸= p. The criterion was first proven for elliptic curves independently by Ogg and Shafarevich,

then later in full generality by Serre and Tate [33] using the powerful machinery of Néron models.

Later, A. Tamagawa proved an anabelian analogue of the NOS criterion for affine curves [40] by

replacing the Tate module with the étale fundamental group.

Sen noticed that, for Galois extensions whose Galois groups are p-adic Lie groups, there is a

remarkable connection between the p-adic Lie filtration, which depends only on the Lie group, and

the filtration by upper ramification subgroups: the two mutually refine each other in a precise

way after a linear change of index [36]. This is an important input to p-adic Hodge theory, as

it allows one to show that certain infinite extensions of fields are arithmetically profinite. Such

extensions have a corresponding field of norms, from which the semilinear endomorphism Φ of the

(Φ,Γ)-module associated to a p-adic representation is extracted.

1.2 Anarboreal Representations

In the analogy between dynamics and abelian varieties, arboreal representations are viewed as

dynamical Tate modules. A source of the difficulty in studying arboreal representations is that

they lack a counterpart for the Tate module’s algebraic structure. With this in mind, Tamagawa’s

result is quite striking from the perspective of a dynamicist interested in arboreal representations:

just like a dynamical system, a typical curve does not have any sort of algebraic structure, and so

Tamagawa uses the pro-ℓ étale fundamental group as a replacement. This is exactly what we will
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endeavor to do in the the first part of this paper. Since we are concerned with dynamical systems

on the curve P1, we will compare our dynamical systems to elliptic curves specifically.

Arboreal representations arise from the construction of the Tate module with the ℓ-torsion,

or equivalently taking preimages of the identity O by [ℓ]. But there are other constructions: the

ℓ-adic Tate module is isomorphic to the ℓ-adic completion of the étale fundamental group of E.

So an alternative way to create a dynamical analogue of the Tate module of a dynamical system

f : X → X would be to find a related dynamical system whose endomorphism is étale and apply

the étale fundamental group functor. The most straightforward way to do so is to delete all the

points of X which prevent f from being étale: namely its grand critical orbit, the set of all points

whose orbit intersects the critical orbit. With this in mind, our guiding analogies are as follows:

Elliptic Curves Dynamical Systems on P1

C, the grand critical pro-divisor

U = E U = P1 − C

[ℓ] : U → U f : U → U

[ℓ]∗ : πét
1 (UK̄)→ πét

1 (UK̄) ϕ = f∗ : πét
1 (UK̄)→ πét

1 (UK̄)

T = πét
1 (UK̄) πét

1 (UK̄)

In other words, we view f(x) and the multiplication-by-ℓ maps as étale endomorphisms of some

variety, and use the geometric étale fundamental groups equipped with the induced endomorphisms

as the big Tate module. For example, when f(x) is a Lattés map associated to a quotient π : E → P1

from an elliptic curve E and multiplication-by-ℓ map, the grand critical divisor of f(x) is the image

of E[ℓ∞] by π. It is not entirely clear what might be a dynamical counterpart to the small Tate

modules Tℓ. Certainly it suffices to consider the completion of πét
1 (UK̄) at all primes smaller than
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d, but a more dynamically natural alternative might be the quotient of πét
1 (UK̄) by the subgroup

∆ =
⋂
n≥1

NG(img(ϕn)),

the intersection of the normal closures of the image of every iterate of ϕ. The endomorphism ϕ

descends to the quotient, and for abelian varieties this construction recovers the ℓ-adic Tate module

and its multiplication-by-ℓ map.

The reader should be careful to note that the arboreal representations with arbitrary base points

do not correspond to the Tate module in our framework: it is only the grand critical representation,

an intrinsic invariant of the dynamical system, which corresponds to the Tate module. This is

not entirely surprising - for abelian varieties, the base point of the Tate module is always the

identity. However, more general arboreal representations can still be incorporated into our anabelian

framework. For example, it turns out that the grand critical arboreal representation exhibits

(almost) all of the possibilities for ramification in any arboreal representation – which makes the

grand critical representation a sort of ramification-theoretic upper bound.

1.3 Dynamical Néron-Ogg-Shafarevich

To help motivate the dynamical Néron-Ogg-Shafarevich theorem, let us recall two equivalences

which play an important role in a proof of the Néron-Ogg-Shafarevich criterion for elliptic curves

and isolate its dynamical content.

E has good reduction at p

⇐⇒ (∗)

the reduction of E[ℓn] modulo p has ℓ2n distinct elements

⇐⇒ (∗∗)
5



the Galois action on the ℓ-adic Tate module is unramified

The dynamics we consider – rational functions on P1 – does not take place on a highly structured

geometric object like the elliptic curve, and it is not necessarily clear what the dynamical analogue

of an elliptic curve should be. As such, it is not clear that the equivalence (∗) has a purely dynamical

interpretation in the arboreal framework. However, the equivalence (∗∗) amounts to a separability

requirement for [ℓn]: the preimage of O should have as many elements mod p as the degree of ℓn.

This separabilty requirement naturally extends to the dynamical setting: when does the preimage

of α ∈ K̄ by fn have deg fn distinct preimages in the residue field? When this happens, it follows

immediately from Hensel’s lemma that the associated arboreal representation is unramified, and

our interest is in the converse.

At the same time, this kind of separability condition plays a prominent role in Tamagawa’s

anabelian analogue of the Néron-Ogg-Shafarevich theorem. In Tamagawa’s theory, good reduction

of a curve X punctured at a divisor D requires an extension of the pair (X,D) over K to a pair

(X,D) over OK where X is smooth and D is relatively étale, which recovers the original pair (X,D)

on the generic fiber. One can immediately lift P1
K to a smooth model P1

OK
, and it is not difficult to

check that the divisor D extends to a relatively étale divsior D if and only if it has no components

with multiplicity, and no points in its support reduce to the same point in the residue field after

making a change of coordinate so that 0, 1,∞ lie in its support. Tamagawa shows that an affine

punctured curve has good reduction in this sense if and only if the Galois action on the geometric

étale fundamental group is unramified.

These observations suggest that the étale fundamental group may provide a bridge between
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Tate modules and arboreal representations, and were the initial motivation for the anabelian con-

structions discussed earlier. In this case, an infinitely punctured projective line takes the place of

the elliptic curve. This suggests a strong notion of good reduction: points of the pre-critical locus

over K should not collapse when reduced modulo p. In other words, we require that a dynamically

interesting invariant not degenerate modulo p, which is very much in the spirit of good reduction.

The logical structure of the various components of the dynamical version of the Néron-Ogg-

Shafarevich is as follows. The Galois group of the ground field K is denoted by Γ, the prime p is

the residue characteristic, and ℓ ̸= p is an auxiliary prime.

The Γ action on Π̄(ℓ) is ramified.

⇐
⇒ Theorem 4.1

The pre-critical incidence portrait has a cycle.

This cycle is either

directed or undirected

⇐
⇒Theorem 4.8 ⇐
⇒ Theorem 4.9

There is an infinitely ramified
branch near a pre-critical branch.

There is a finitely ramified branch
near a pre-critical branch.

⇐
⇒Theorem 4.8

Some branch is infinitely ramified.

⇐
⇒ Theorem 4.9

Some branch is finitely ramified.

In Theorem 4.8 the infinitely ramified branch can be taken to be arbitrarily close to the pre-

critical branch. If no critical points are periodic then one can take the infinitely ramified branch

to be pre-critical. In contrast, for Theorem 4.9 the finitely ramified branch cannot necessarily be

chosen to be arbitrarily close to the pre-critical branch, and in general lies on a p-adic annulus

around the pre-critical branch.
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1.4 Dynamical Sen

In the dynamical setting, we replace p-adic Lie groups and the Lie filtration of Sen’s theorem with

“branch extensions” and their “branch filtration”. For those familiar with arboreal representations,

we are taking a single branch of the tree, filtered by height up the branch. Thus our dynamical

version of Sen’s theorem says that, after possibly extending the ground field and making a linear

change in index, each member of the branch filtration coincides exactly with a member of the upper

ramification filtration.

The upper ramification filtration is in general quite difficult to understand, and captures subtle

arithmetic phenomena, while the branch filtration is quite simple and dynamically natural: starting

from our ground field K, we have a tower of extensions Kn over K obtained by adjoining a com-

patible sequence (“branch”) of preimages of the base point. We are able to give a general sufficient

criterion for our result to hold: it applies to extensions associated to so-called “strictly tamely

ramification-stable” branches. In our situation, “tamely” simply means that p does not divide a

certain quantity d, which is the limiting valuation of the members of the branch. Such branches are

particularly striking from a dynamical perspective, exhibiting a kind of stability in the structure of

their higher ramification: the intermediate Hasse-Herbrand functions associated to Kn/Kn−1 are

identical up to small and well-controlled errors, neglecting scaling. For these branches, we obtain

our main result:

Theorem 5.18. Suppose our branch, associated to the polynomial f(x) and base point α0, is strictly

tamely ramification-stable over K. Then K∞/K is arithmetically profinite, and there is a constant

V such that for all n,

Kn = K((V−1)n+1)
∞ .

8



A more literal, and weaker, analogue of Sen’s theorem in the dynamical setting would be that

the two filtrations refine each other, again, after a linear change of index. However, for one of our

applications, to a question of Berger [8], we need the stronger formulation of Theorem 5.18.

We are able to give a general sufficient criterion for a branch to be strictly tamely ramification-

stable, Proposition 5.11. This criterion consists of two pieces: that p does not divide d, and verifying

an inequality depending only on the valuations of the coefficients of P (x) and the valuation of α0.

Some branches which are not tamely ramification-stable may become so after extending the ground

field and re-indexing the branch; we call such branches potentially tamely ramification-stable.

Using this criterion, we are able to show that if f(x) is either post-critically bounded or of prime

degree p, and we take a branch such that p does not divide the associated constant d (a limiting

normalized valuation of the members of the branch), then it is potentially tamely ramification-

stable, and we use this information to characterize higher ramification in the associated extension:

Corollary 5.19. Let P (x) be a polynomial which either has degree p, or is post-critically bounded

and has degree pr. Take any nontrivial branch for P (x), and suppose p does not divide the constant

d associated to the branch. Then the dynamical branch extension K∞/K is arithmetically profinite,

and there are constants N and V such that after replacing K by KN ,

Kn = K((V−1)(n−N)+1)
∞ ,

for all n.

For any particular branch, it is not difficult to apply our criteria to check whether or not it

is (potentially) strictly tamely ramification-stable, so long as one knows that p does not divide

d. In fact, our criterion is almost entirely effective: only the stipulation that p does not divide

d is not known to be effective. Each branch determines certain “limiting ramification data” from
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which one can completely recover the Hasse-Herbrand function of the associated branch extension

in the strictly tamely ramification-stable case when d is known. The calculation of the limiting

ramification data depends only on P (x) and some of the initial entries of the branch (the number

of entries needed is itself effective). While we lack a general algorithm to determine d, it can be

calculated in many particular instances.

We apply our results to provide a partial answer to two questions. One is raised by Berger [8],

who asks: is it possible to show by elementary methods that if K∞/K is Galois and the base point

is a uniformizer then its Galois group is abelian? This is known to be true by Berger [9] using quite

sophisticated methods from p-adic Hodge theory. Our main theorem involves more elementary

tools, and allows us to re-prove this fact in some situations:

Theorem 5.20. Assume p is odd. Suppose α0 is a uniformizer for K, f ′(0) is nonzero, and we

are given a branch associated to f(x) and α0 which is tamely ramification-stable.

If K∞/K is Galois, it is also abelian.

The other question is suggested by both Aitken, Hajir, and Maire (Question 7.1 in [1]) and Bridy,

Ingram, Jones, Juul, Levy, Manes, Rubinstein-Salzado, and Silverman (Conjecture 6 in [10]), who

essentially ask if it is possible for an arboreal extension over a number field to be ramified at

finitely many primes but not wildly ramified. It turns out that this is not possible for polynomials

of prime-power degree:

Theorem 5.22. Let F be a number field and p a prime of F lying over a rational prime p. Let

P (x) ∈ OF [x] be a monic polynomial of degree pr such that f(x) ≡ xp
r

mod p, and let α0 ∈ F .

Then the arboreal representation associated to f(x) and α0 is infinitely wildly ramified.

If, further, f(x) has prime degree and v(α0) ̸= 0, or is post-critically bounded with no restriction

10



on vp(α0), and there is a branch over α0 whose associated constant d is not divisible by p, then

every higher ramification subgroup over p of the arboreal representation is nontrivial.

1.5 Prior Work

Ramification has always played an important role in the study of arboreal representations, begin-

ning with the introduction of arboreal representations by Odoni [27]. For example, progress towards

various versions of Odoni’s Conjecture [7, 21, 38] make essential use of ramification-theoretic meth-

ods. More recently, ramification in arboreal extensions has been studied in its own right [3, 36, 18,

35, 1, 8, 39], with interesting applications to dynamical systems over both global and local fields.

To the author’s knowledge, there has been no prior work on the Néron-Ogg-Shafarevich criterion

in the dynamical setting, nor work on interactions between anabelian geometry and dynamics.

While the main results of this dissertation are described as dynamical analogues of the NOS

criterion and Sen’s theorem, our initial motivation actually comes directly from arithmetic dynam-

ics and the structure of arboreal representations associated to post-critically finite maps. Arboreal

representations, first introduced by Odoni [27], have been a subject of significant focus in arithmetic

dynamics. Odoni exhibited two specific examples of polynomials with maximal arboreal represen-

tations: a monic polynomial with generic coefficients over any field, and the polynomial x2 − x+1

over Q. Odoni’s former result led him to state a conjecture–now known to be false by work of

Dittman and Kadets [13]–that examples of such polynomials exist over any Hilbertian field. Since

then, others have stated and studied a multitude of variations on Odoni’s conjecture. This recently

culminated in the resolution of (one version of) Odoni’s conjecture over number fields, in prime

degree by Looper [21], in all even degrees and certain odd degrees by Benedetto and Juul [7], and
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finally for all degrees by Specter [38]. The branch extensions we tackle are the subextensions of

the full arboreal extension which are associated to a single branch of the full preimage tree. The

extensions we study appear within the full arboreal representation and the ramification along such

branches is quite important for the aforementioned results on Odoni’s conjecture. Additionally, An-

drews and Petsche [4] as well as Ferraguti and Pagano [16] have also used ramification information

to prove interesting results about abelian arboreal representations over number fields. Our results

are finer than necessary for any of the papers mentioned, but the important role ramification plays

in those results suggests the potential value of the more detailed and delicate ramification informa-

tion that we obtain. Though arboreal extensions over global fields are still quite mysterious, even

less is known over local fields. Anderson, Hamblen, Poonen, and Walton [3] studied full arboreal

extensions in the local setting for polynomials of the form xn+ c. In fact, they produce an example

which shows that a literal dynamical analogue of Sen’s theorem cannot hold in full generality, even

in the case of prime degree. Very recently, Hamblen and Jones [18] also studied higher ramifica-

tion in arboreal representations with Sen’s theorem in mind and proved that various interesting

families of arboreal representations are deeply wildly ramified by showing that they contain all the

p-power roots of unity, as well as a different dynamical version of Sen’s theorem. The results in

this dissertation and those of Hamblen-Jones are, in a sense, orthogonal generalizations of Sen’s

theorem: Hamblen and Jones restrict the base point but not the rational map, while the author’s

result restricts the rational map but not the base point. Jones and Hamblen were unaware of the

author’s earlier paper [36] or corresponding preprint, and the results are entirely independent.

The case of post-critically bounded polynomials is of particular dynamical interest because

it includes the post-critically finite polynomials of prime-power degree. Currently, the arboreal

representations of post-critically finite polynomials are not well-understood, but it is known that
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they have arboreal representations which are ramified at only finitely many primes [1], so one

would expect their arboreal representations to largely be controlled by their local behavior at those

primes. Our result reveals initially unexpected structure to their wild ramification at the prime in

question.

Some other work has been done with extensions of the kind we consider. Both Berger [8] and

Cais and Davis [11] study them (under the name “ϕ-iterate extensions”) with the machinery of p-

adic Hodge theory, and show that if these extensions are Galois they must be abelian. Cais, Davis,

and Lubin [12] study the ramification in a somewhat more general setting, using similar methods to

ours to give a characterization of arithmetically profinite extensions – it is an important corollary of

Sen’s theorem that p-adic Lie extensions are arithmetically profinite. The dynamical case of their

result applies to a broader class of polynomials than ours, with the restriction that the base point

is a uniformizer. For the polynomials considered in this paper, we are able to relax this restriction

on the base point and obtain more precise information about the ramification of our extensions.
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Chapter 2

Preliminaries

In this chapter we gather some of the preliminary facts, definitions, and notation which form a

common basis for Chapters III, IV, and V. Mainly, we introduce branch representations and the

ramification behavior of branch representations contained in a periodic open disc. The contents

are the respective dynamical preliminary sections of [37, 36].

2.1 Basic Definitions and Notation

Let p be a prime andK a mixed-characteristic p-adic field with ring of integersOK and a uniformizer

πK and residue field K̃. In other words, OK is a complete discrete valuation ring with perfect residue

field K̃ = OK/(πK) of characteristic p, and K is the field of fractions of OK . For example, K might

be a finite extension of Qp or Qur
p . In some situations we may require that the residue field OK/(πK)

be finite.

Definition 2.1. Let S be a scheme. A dynamical system over S consists of an S-scheme X

equipped with a morphism f : X → X over S.

The nth iterate of f is denoted by fn. Typically, f will be a rational map on some projective

space. In this case, we fix a choice of polynomials p, q ∈ OK [x] such that f(x) = p(x)/q(x) and at

least one coefficient of p or q is a unit. This choice is unique up to multiplying q and p by the same

unit constant in OK , so the (multi)set of valuations of the coefficients of the polynomials p and q
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depends only on f . We refer to these as the valuations of the coefficients of f .

Let K̄ be an algebraic closure of K and v an extension of the valuation on K to K̄ normalized

so that v(p) and the valuations of the coefficients of f are integers. We fix an auxiliary subfield E

of K such that v(E) = Z. Typically one begins with E = K and v the usual normalized valuation,

but the field K will be allowed to vary while E is held fixed. This essentially amounts to a choice

of valuation v on Ē = K̄, independent of K, such that p and the coefficients of the rational map

f : P1 → P1 have integer valuation.

Let ΓK be the absolute Galois group of K̄ over K, and denote by Γν
K the higher ramification

group associated to a nonnegative real number ν by the upper-numbering. For detailed exposition

on higher ramification, see Serre [34] or Lubin [22]. Note that the upper and lower filtrations are

indexed slightly differently between these two sources; we follow Lubin’s convention.

When f is a power series, we denote by fi the coefficient of xi in f(x).

In this dissertation, we are almost exclusively interested in dynamical systems on curves. Since

curves of genus 2 or greater have few endomorphisms, all of which are finite-order automorphisms,

the most interesting dynamics occurs on curves of genus 0 or genus 1; in the presence of a rational

point, this leaves just projective lines or elliptic curves. The study of elliptic curves is a rich

and well-developed field in its own right. Our attention is directed at dynamical systems on the

projective line over SpecK or SpecOK , and one of our main goals is to understand the extent

to which this theory parallels that of the study of elliptic curves. As such, we will often assume

X = P1
K and f is a rational map, hence an endomorphism of P1

K .
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2.2 Good Reduction I

An important notion in dynamical systems is good reduction:

Definition 2.2. Let f : X → X be a dynamical system over K. Then we say that the dynamical

system has good reduction if there is a proper, smooth OK-scheme X and a dynamical system

f : X→ X over OK whose restriction to the generic fiber is the original dynamical system.

When a dynamical system has good reduction, the restriction f̃ : X̃ → X̃ to the special fiber

X̃ is a dynamical system over the residue field K̃ = OK/(πK).

In general, we adopt the convention of using Latin letters for objects defined over SpecK and

gothic letters for those defined over SpecOK , while a tilde over an object denotes reduction.

We are typically interested in X = P1
K and X = P1

OK
, which has reduction X̃ = P1

K̃
. To be

more concrete, X is obtained by gluing SpecOK [x] and SpecOK [y] along the open subschemes

SpecOK [x, 1/x] and SpecOK [y, 1/y] by the isomorphism x 7→ 1
y . It is important to note that

a point a ∈ X has a canonical lift to a point a in X by the valuative criterion for properness.

Concretely, upon fixing coordinates, if a is integral, let a = a as an ideal in OK [x], and if a is not

integral, let a be the ideal corresponding to 1/a, taken in OK [y]. In this case, a non-integral point

of X reduces to the point at ∞ of X̃ = P1
K̃
.

One quite often studies dynamical systems with a marked divisor – for instance, arboreal rep-

resentations are associated to dynamical systems with a marked base point. The notion of good

reduction can be extended to this case:

Definition 2.3. Suppose that f : X → X is a dynamical system over K with an effective (Cartier)

divisor D on X defined over K. We say that the pair (f : X → X,D) has good reduction if
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f : X → X has good reduction in the sense of Definition 2.3, hence a lift f : X→ X, and there is a

relatively étale divisor D of X which restricts to D on the generic fiber.

In our usual case, X = P1
K and X = P1

OK
, this notion can be made very concrete: a pair (f,D)

of a dynamical system and divisor on X has good reduction if and only if f has good reduction, D

is reduced, and no two points in the support of D have the same reduction in X̃ (after making a

change of coordinate so that 0, 1, and ∞ are in the support of D). One should be cautious when

comparing this definition to the literature, where it is typical to say that a dynamical system with

a marked base point (f, a) has good reduction if and only if f has good reduction and a is integral

(i.e. in OK). Our notion of good reduction does not require that the base point a be integral. This

is consistent with the author’s observation [36] while studying higher ramification that non-integral

base points lead to essentially the same behavior with only small adjustments arising from the

change in sign.

2.3 Branch Representations

Instead of the full arboreal representation, we tend to work with more manageable sub-representations.

Definition 2.4. A branch for f over K is a sequence (αn)n∈N of elements of X̄, such that

f(αn+1) = αn. The first entry, α0, is called the base point.

Given any branch, its Galois orbit naturally has the structure of a directed graph, which is

typically a tree, though in general it can have a cycle. The natural coordinate-wise action of ΓK

on this tree gives rise to a kind of representation:

Definition 2.5. Given a branch B = (αn)n∈N for f , let T be the graph formed by the Galois orbit
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of B. The associated branch representation is the homomorphism from ΓK to Aut(T ) induced

by the action of ΓK .

Definition 2.6. Given a base point a ∈ K, let T be the graph of all preimages of a by f(x), with

directed edges according to the action of f . Then the (full) arboreal representation for f(x)

and a is the homomorphism from ΓK to AutT given by the Galois action on the graph.

The full arboreal representation can naturally be decomposed in terms of the branch representa-

tions associated to the maximal Galois orbits of branches. Over global fields, branch representations

tend to be quite large: a very weak form of Odoni’s conjecture predicts that the Galois action on

branches of a “typical” arboreal representation is transitive, and hence the branch representation

coincides with the full arboreal representation. Over local fields this behavior is not typical.

Given a branch B = (αn), there is a naturally associated tower of fields Kn = K(αn) and

K∞ =
⋃

nKn. The extension K∞/K is unramified (resp. finitely ramified, resp. infinitely ramified)

if and only if the corresponding branch representation is unramified (resp. finitely ramified, resp.

infinitely ramified). This also gives rise to a dynamical filtration on ΓK , the absolute Galois group

of K:

Definition 2.7. Fix a branch B = (αn) and let Kn = K(αn). Then we define the nth branch

subgroup of ΓK with respect to B as the stabilizer of Kn in ΓK . This subgroup is denoted

ΓK,n,B or simply Γn when B is understood.

These subgroups are not to be confused with the lower numbered ramification subgroups of

finite Galois extensions of K. Since the absolute Galois group does not admit a lower numbering,

no confusion should arise. The branch filtration does behave like the lower numbering filtration

insofar as it is compatible with restriction to subgroups – if L is an extension of K, then ΓL,n,B =
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ΓK,n,B ∩ ΓL.

2.4 Power Series

The branches of greatest interest to us are those contained entirely in an open p-adic disc around

a fixed point of f(x). We define discs with the spherical metric on P1 – it is the natural choice in

our setting, as it is conjugation invariant. Away from ∞ the spherical metric coincides with the

usual p-adic metric. On such a disc, the rational function can be replaced by a convergent power

series with integral coefficients and finite Weierstrass degree. This form is much more convenient

for the study of ramification.

Definition 2.8. We say that a branch B = (αn) is periodic if its entries are periodic. Likewise

if B̃ = (α̃n) is periodic we say that B is residually periodic. The (exact) period m of B is the

smallest integer m such that αn = αn+m for all n, and the (exact) residual period of B is the

(exact) period of B̃.

Definition 2.9. Suppose a branch B = (αn)n∈N is residually periodic of period m. Define the

ramification index of the branch, denoted eB, as the Weierstrass degree of fm(x) expanded as

a power series around x = α0.

The ramification index of a residually fixed branch is constant on the open disk of (spherical)

radius 1 around the branch, so it suffices to expand f(x) around any point near α0.

Example. Over Qp the polynomial xp + px2 − p2x+ p has a unique branch based at α0 = p and

contained in the open unit disk. This branch has residual period 1 (i.e. is residually fixed) and has

ramification index p. The unique branch at the totally ramified fixed point∞ also has ramification

index p.
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Example. Let n be a positive integer not divisible by p. The rational map

f(x) =
xn − px

1− x

has a unique branch based at α0 = p and contained in the open disc. This branch is also residually

fixed and has ramification index n: the spherical distance between 0 and p is less than 1, and

f(x) = (xn − px)(1 + x + x2 + ...) when expanded as a power series around x = 0, which clearly

has Weierstrass degree n.

This rational map has a fixed point at ∞ as well, but the ramification index of the unique

branch contained in the open disc around ∞ (in the chordal metric) is n = 1. To see this, make

the change of coordinate x 7→ 1/x to move ∞ to zero. In these coordinates, our rational map is

1

f
(
1
x

) =
xn − xn−1

1− pxn−1
,

which evidently has Weierstrass degree n− 1 on the disc around x = 0.

The reduction of the the first example, f(x) = xp + px2 − p2x + p, is the rather special map

f̃(x) = xp. The derivative of f̃ is identically zero, or in other words f̃ is ramified everywhere. This

special behavior sometimes needs to be handled separately:

Definition 2.10. The height of f(x) is the largest integer h such that we can write f̃(x) = Q̃(xp
h
)

for some rational function Q(x). A rational function has positive height if and only the reduction of

its derivative is identically zero. For simplicity, we fix a choice of Qf for f such that f̃(x) = Q̃f (x
ph),

where h is the height of f .

The significance of height zero is the following fact, immediate from the definitions:

Proposition 2.11. If f(x) has height zero, then every critical point of its reduction f̃(x) is the

reduction of a critical point of f(x).
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This is trivially false when the rational map has positive height, as then f̃ ′(x) = 0 and every

point is a critical point.

Our use of the word “height” is in reference to the height of a formal group, in the spirit of the

analogy between arithmetic dynamics and abelian varieties. The reductions of rational maps with

positive height exhibit vague behavioral similarities with positive height endomorphisms of formal

groups.

2.5 Main Ramification Lemma

The following proposition is the starting point for the main results in Chapters IV and V. In

Chapter IV, one of our main accomplishments is a kind of converse, while in Chapter V we improve

this relatively coarse description of ramification by explicitly describing the higher ramification

filtration of the representation.

We only apply Lemma 2.12 to the power series expansions of rational maps, but the more general

case fits naturally into the study of dynamical systems on the open p-adic unit disk initiated by

Lubin [24, 23].

Lemma 2.12. Let f(x) be a power series in OK [[x]] with finite Weierstrass degree e and such that

f(0) = 0. Let (αn)n∈N be any nontrivial branch for f(x) contained in the open unit disk. Then for

all n sufficiently large,

(a) v(αn+1) =
v(αn)

e
,

(b) the sequence (env(αn))n∈N is eventually constant,

(c) K(αn+1)/K(αn) is totally ramified of degree e.
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Proof. When e = 1 all of the claims are trivial – from the Newton polygon it is immediately

apparent that v(αn) = v(αn−1), while Hensel’s lemma guarantees αn ∈ K(αn−1). So assume e > 1.

Let πn be a uniformizer for Kn = K(αn) and write αn = unπ
dn
n for some integer dn (possibly

negative) and unit un of OKn .

(a) By considering the Newton polygon again, we see that

v(αn+1) ≤ max

{
v(αn)− 1,

v(αn)

2

}
,

and hence the sequence v(αn) decreases monotonically to zero. Then there is N > 0 such that

for all n ≥ N , v(αn) is strictly smaller than the valuation of each of the first e − 1 coefficients.

Therefore the Newton polygon has a single line of negative slope −v(αn)/e, hence v(αn+1) =
v(αn)

e .

(b) Immediate from (a).

(c) Let en be the ramification index of Kn/Kn−1. Take n− 1 large enough that (a) holds, and

so we have both

v(αn) = v(unπ
dn
n ) = dnv(πn) =

dnv(πn−1)

en
,

and

v(αn) =
v(αn−1)

e
=

v(un−1π
dn−1

n−1 )

e
=

dn−1v(πn−1)

e
.

Comparing the two yields the following relation:

dn =
en
e
dn−1. (2.1)

From (2.1), we see that if en = e, then dn = dn−1. So we need only verify that en = e for n large

enough. Evidently en ≤ e, so we wish to show that this inequality is strict at most finitely often.

Indeed, each time the inequality is strict, the integer dn has strictly fewer divisors than dn−1. An

integer cannot have a negative number of divisors, so these strict drops happen only finitely many

times. □
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Lemma 2.13. Let f(x) be a rational map over K and B a branch for f . If B is residually periodic

of period m and ramification index e, then for all n sufficiently large, the extension Km+n/Kn is

totally ramified of degree e.

Proof. Replace f by fm and B by (αkm+i)k∈N, where i < m and i = n mod m so that B is

residually fixed and contains αn. Change coordinate so that B is contained in the open unit disc

and f fixes 0. Expand f as a power series then apply Lemma 2.12. □

A related result, under the assumption p ∤ e, is proven by Ingram [19], who exploits the fact

that polynomials have a totally ramified fixed point at ∞. After making a change of coordinate

to move ∞ to 0, the resulting rational function can be written as a power series with Weierstrass

degree equal to its degree, to which Lemma 2.12 applies. When p ̸= e, Ingram shows that f is

analytically conjugate to a power map. His construction can be directly adapted to power series

whose Weierstrass degree is not divisible by p. Of course, for our dynamical Sen’s theorem, we

require p|e. In some circumstances, it is possible to show that f is analytically conjugate to a

powering map or series with integral coefficients: Salerno and Silverman [32] study this when e is

a power of p.
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Chapter 3

Étale Fundamental Groups

In this chapter, we describe conditions under which a dynamical system f : X → X over K on

a general scheme X can be modified to a dynamical system whose endomorphism is finite étale,

and hence induces a dynamical system on a profinite group by taking the étale fundamental group.

There is a Galois action on this profinite group which is equivariant with respect to the dynamics,

and can be viewed as a dynamical analogue of the Galois action the (big) Tate module equipped

with its multiplication-by-ℓ endomorphism. This anabelian representation refines the usual arboreal

representation, and we will explain how to reconstruct the latter from the former.

This material is drawn from the author’s preprint [37], primarily Section 2 and some pieces of

Section 4. It was subsequently brought to the author’s attention that a related construction has

been studied by Pink [30, 29, 28]. Our fundamental groups are much larger than those considered

by Pink because we want f to not merely be an étale cover of another fixed scheme, but to further

be an endomorphism of this scheme so that we may functorially assign a dynamical system on a

scheme to a dynamical system on a profinite group.

3.1 Dynamical Purity

Dynamical considerations typically give rise to infinite diagrams of schemes, and then to infinite

projective limits in the category of schemes. Such limits need not exist in general, but they will
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when the morphisms in the diagram are affine. So we restrict our attention to dynamical systems

in which we can take such limits

Definition 3.1. Fix a dynamical system f : X → X with f finite and flat. Let Bn be the branch

locus of fn, the image of the ramification locus, and Dn the union of Bn with its inverse image by

fn, then set Un = X−Dn. Then we say that the dynamical system is nearly étale if the inclusion

of Un into X is an affine morphism.

We can see that Un+1 ⊆ Un, hence the inclusion of Un+1 into Un is also affine.

It is worth noting that for sufficiently nice schemes X with a finite endomorphism f : X → X,

the associated dynamical system will typically be nearly étale. This is true of all curves, and in

fact any curve over K is itself affine after making at least one puncture at a K-rational or closed

point. Indeed, it can be shown that in many cases the purity of the ramification locus implies that

inclusion of the complement of the ramification locus of fn(x) is affine [5]. We delete somewhat

more, the entire inverse image of the branch locus Bn, to ensure that f : Un+1 → Un is étale. In

this sense, being nearly étale is a strong dynamical purity condition.

Proposition 3.2. If f : X → X is nearly étale, then the restriction f : Un+1 → Un is finite étale.

Proof. Consider an open affine SpecA in Un. Because f and the inclusions of Un and Un+1 in X are

affine, the inverse image of SpecA by f is an affine open SpecB in X. Moreover, f−1(Un) = Un+1

and so SpecB is an open affine in Un+1. Since f is finite and flat and the ramification locus has

been deleted, the extension of rings B/A induced by f is finite étale, so we are done. □

Curves of genus at least two have very few endomorphisms, so dynamics on curves is essentially

limited to genus zero and genus one: projective lines and elliptic curves. Elliptic curves have their
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own well-developed theory, so we are primarily concerned with the situation in genus zero (though

often with elliptic curves in mind for motivation). This leaves us only with projective lines, and

here every finite endomorphism is nearly étale:

Proposition 3.3. Let A be an integral domain and f : P1
A → P1

A a dynamical system defined by a

nonconstant rational map f over A. This dynamical system is a nearly étale dynamical system.

Proof. Morphisms associated to nonconstant rational maps are finite, and upon dehomogenizing it

is easy to see that the inclusion of each Un = P1
A −Dn into P1

A is affine (in fact, each Un is already

an open affine subscheme of P1
A). □

3.2 Pro-Divisors

Just as dynamical considerations require us to consider infinite diagrams of schemes, we will also

want to consider divisors (arising, for instance, from orbits or backward orbits) which have infinitely

many points. This requires a small generalization from divisors to “pro-divisors”, to allow infinite

formal sums with possibly infinite coefficients:

Definition 3.4. Let X be a scheme. An effective pro-divisor D on X over K is a sequence of

effective Cartier divisors (Dn)n∈N, defined over K, such that for all m ≤ n, the scheme-theoretic

intersection of Dn and Dm is Dm. Equivalently, for m ≤ n, we have SuppDm ⊆ SuppDn and the

multiplicity of every point P in Dn is greater than or equal to its multiplicity in Dm.

A general philosophy in dynamics is that the critical orbit controls the behavior of the dynamical

system; we are also working “backwards” and so we work with the grand critical orbit:
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Definition 3.5. The grand critical pro-divisor of f is the effective pro-divisor GCf on X

determined by the system of divisors Dn = Bn + f−n(Bn) where Bn is the branch locus of fn(x)

and f−n(Bn) is the preimage of B by fn.

The complement of Cf “should be” the largest open subscheme on which all iterates of fn are

étale and surjective. Of course, this complement is neither open nor a scheme in general. However,

the complement of the grand critical divisor of a nearly étale endomorphism is a scheme, though

generally not an open subscheme of the original.

Theorem 3.6. Let f : X → X be a nearly étale dynamical system, with ramification divisors Rn

and open subschemes Un = X −Dn. Then the associated limit U∞ = lim←−Un of the complements of

the branch and ramification divisors with their natural inclusions exists in the category of schemes,

and f : U∞ → U∞ is finite étale.

Proof. The inclusion of each Un into X is affine, hence also its inclusion into Un−1. Thus the

morphisms in the diagram are all affine, and in this case such a limit does exist in the category of

schemes. The restrictions f : Un → Un−1 are all finite étale, and so they have a finite étale limit

f : U∞ → U∞ as well. □

3.3 Critical Incidence Graphs

The grand critical pro-divisor is an important invariant of a dynamical system f : P1
K → P1

K . A

closely related invariant is the full critical locus of the dynamical system

Definition 3.7. The full critical locus of a dynamical system f : X → X is the pro-divisor

determined by the system (Rn)n∈N of ramification divisors: Rn is the critical locus of fn, with

multiplicities.
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We can augment these divisors with a graphical structure that captures the dynamics. This

object plays a central role in Chapter IV.

Definition 3.8. Let G be an effective pro-divisor on X. The incidence graph of G is the directed

multigraph with vertex set the support of G, and an undirected edge g↔ h if g and h meet on the

special fiber. If g is a point with multiplicity, it will have a loop, and if points meet with multiplicity

there will be multiple edges.

If we further assume that f has good reduction, and hence extends to a morphism f : X → X,

then we can augment the incidence graph with dynamical structure:

Definition 3.9. Let G be an effective pro-divisor on X. The dynamical incidence graph of

f(x) on G is obtained by augmenting the incidence graph of G with a directed edge g → h if

f(g) = h.

Any dynamical incidence graph has a reduction G̃, obtained by identifying all vertices connected

with an undirected edge. When f has good reduction, this is the same as the dynamical incidence

graph of f̃ .

For our purposes, there are two important dynamical incidence graphs: one on the full critical

locus, and another on the grand critical locus:

Definition 3.10. Let f : P1
K → P1

K be a rational map with good reduction that has at least three

distinct pre-critical points, or equivalently, not conjugate to a powering map. Fix coordinates on

P1
OK

and identify its generic fiber with P1
K such that {0, 1,∞} are pre-critical points. Let Cf be

the full critical divisor of f , and let GCf be the the grand critical divisor of f .

Then the (full) critical incidence graph of f is the dynamical incidence graph on Cf and

the grand critical incidence graph of f is the dynamical incidence graph on GCf .
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(πK)SpecK

SpecOK

P1
OK

P1
K̃
, the special fiberP1

K , the generic fiber

a

b

c

a

b

c

ã = b̃

c̃

f(a) = c

f̃(ã) = c̃
f(a) = c

Figure 3.1: A sketch of P1
OK

and a relatively étale divisor.

There are many other pro-divisors with interesting dynamical incidence graphs, such as the

portrait of a periodic point, preimages of a fixed base point, and so on. In the next chapter we will

focus on the full critical pro-divisor.

Example. Suppose f has good reduction and we are given a divisor D = a+ b+ c where ã = b̃ and

f(a) = c. We can lift this to P1
OK

to obtain a relative divisor D = a+b+c, where the divisors a and

b meet on the special fiber and f(a) = c. The geometry of the situation is illustrated in Figure 3.1.

The intersection of a and b is intentionally drawn as a meeting of tangents: the divisorD is not a

relative normal crossings divisor, hence not relatively étale, and this intersection is the obstruction.
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a b

c

Figure 3.2: The dynamical incidence graph associated to Figure 3.1.

These intersections give rise to the covers that witness ramification in the representation on the

étale fundamental group. Of course, in this situation D has only 3 points and there is a change of

coordinates that would separate the two.

The dynamical incidence graph associated to Figure 3.1 is depicted in Figure 3.2.

3.4 Good Reduction II

The notion of good reduction (Definition 2.3) for dynamical systems with a divisor readily extends

to pro-divisors.

Definition 3.11. Given a pro-divisor D = proj limDn on X, we say that it has good reduction

if there is a proper smooth model X over SpecOK with effective relatively étale divisors Dn that

restrict to X and Dn on the generic fiber.

Definition 3.12. Let f : X → X be a nearly étale dynamical system on P1
K . Then we say that

the dynamical system has good critical reduction if and only if the critical pro-divisor of f(x)

has good reduction.

Since we only work with X = P1
K , the extension to X is unique up to a change of coordinate

over OK after moving three points to {0, 1,∞}. In this setting an effective divisor on X is relatively

étale if and only if it (1) has no components with multiplicity, and (2) no components which meet
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on the special fiber. Condition (2) originates from the stipulation that a relatively étale divisor

must be a relative normal crossings divisor.

Good critical reduction is a stronger notion than usual good reduction:

Proposition 3.13. If f : P1
K → P1

K is a rational map of degree at least two which does not have

potentially good reduction, then it has bad critical reduction.

Proof. If f has at least three distinct critical points, then make a change of coordinate so that 0, 1,

and ∞ are critical points of f . Otherwise, f has two distinct critical points. If f does not have a

pre-critical point distinct from these two point, then it already has bad critical reduction and there

is nothing to prove. Thus we may assume f has two distinct critical points and a third distinct

point which is pre-critical. Then make a change of coordinate so that 0 and ∞ are critical points,

and 1 is pre-critical. These changes of coordinate may require adjoining (pre-)critical points to the

ground field, after which f still has bad reduction.

Let p and q be relatively prime polynomials in OK [x] such that at least one of them has a unit

coefficient and f(x) = p(x)/q(x). Suppose that p̃ and q̃ are both nonzero. Then when written this

way, bad reduction of f is equivalent to the reductions p̃ and q̃ having a common root in the residue

field, and hence p and q having roots a and b, respectively, whose reductions are equal. Since p and

q have no common roots in K, we see that f(a) = 0 and f(b) =∞. Therefore, the critical points 0

and ∞ have preimages which meet on the special fiber, so f cannot have good critical reduction.

Otherwise, exactly one of p̃ and q̃ is zero (else neither would have a unit coefficient). In this

case, consider preimages of the (pre-)critical point 1, which are solutions to the equation

p(x) = q(x).

If p̃ is nonzero, then the above reduces to p̃(x) = 0, and so there is a preimage of 1 and a root of
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p with the same reduction. A root of p is exactly a preimage of zero, and so this preimage appears

with multiplicity on the reduction of the pre-critical divisor. If instead q̃ is nonzero, an essentially

identical argument shows that 1 and ∞ have preimages, necessarily pre-critical, which meet on the

special fiber.

□

3.5 Anarboreal Representations

In the same way that anabelian representations on the étale fundamental group are “beyond”

abelian (i.e. beyond cohomology), we can use our constructions and the étale fundamental group

to define “anarboreal” representations which go beyond the usual arboreal representations. It

is the author’s hope that the analogy between abelian varieties and dynamical systems will be

stronger when anarboreal representations are compared to the Tate module. Our structure has the

advantage of producing a Galois action on a (typically nonabelian) group, rather than a somewhat

less algebraically structured tree. In particular, when restricted to elliptic curves, our representation

is exactly the usual Galois representation on the Tate module, which is not the case for arboreal

representations.

The usual arboreal representation can be recovered as a “skeleton” of the anarboreal repre-

sentation by forgetting most of the group structure. In fact, there is an intermediate kind of

representation (the branch cycle representation of Fried [17]) which is vastly simpler than the anar-

boreal representation but tracks slightly more data, especially ramification-theoretic data, than the

arboreal representation. We do not study the branch cycle representation here, but we hope that

it will be of interest to other dynamicists.
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Theorem 3.14. Suppose that X is defined over a field K. Let x̄ be a geometric fixed point of f(x)

which is not in the grand critical divisor. Then let

πét
1 (U∞, x̄) = lim←−πét

1 (Un, x̄),

which has an endomorphism ϕ : πét
1 (U∞, x̄)→ πét

1 (U∞, x̄) induced by f .

Moreover, there is an étale homotopy exact sequence

0 πét
1 ((U∞)K̄ , x̄) πét

1 (U∞, x̄) πét
1 (SpecK, x̄) 0

which is ϕ-equivariant.

Proof. The existence of these groups and the endomorphism ϕ follows from Theorem 3.6. The

exact sequence arises as the limit of the étale homotopy exact sequences associated to the Un, as

inverse limits preserve exactness in the category of profinite groups. □

When f is a rational endomorphism of P1
K and not conjugate to a powering map, the grand

critical locus is infinite, and so the geometric fundamental group Π̄ is a free profinite group on

countably many generators. The generators correspond to inertia groups over the points of the

grand critical divisor – modulo a single relation, that the product of all generators in a certain

order (as a limit) is the identity – and the action of ϕ is determined by its action on those points.

The exact sequence of Theorem 3.14 induces an (outer) action of Γ on Π̄. As we will discuss

shortly, one can recover the grand critical arboreal representation associated to f(x) from this

action by looking at the “skeleton” of the outer action induced by its action on conjugacy classes

of inertia subgroups.
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3.6 Recovering Arboreal Representations

It is straightforward to reconstruct the grand critical arboreal representation of a dynamical system

from the anarboreal representation. In particular, πét
1 (Ū∞) is the free profinite group on countably

many generators (σα) where σα generates an inertia subgroup over α. Let χ = χK : ΓK → Ẑ∗

be the cyclotomic character. Then modulo conjugacy, it is well-known that γ ∈ ΓK acts on these

generators by

γ(σα) = σ
χ(γ)
γ(α).

This is the so-called branch cycle representation [17]. It is much coarser than the full represen-

tation on the étale fundamental group, but tracks slightly more information than the arboreal

representation.

It follows immediately that the grand critical arboreal representation can be identified with the

action of ΓK on conjugacy classes of inertia subgroups of πét
1 (Ū∞). In fact, Nakamura’s anabelian

weight filtration [26] allows one to identify these conjugacy classes of subgroups from just the action

of ΓK on the étale fundamental group. Many other classical results in anabelian geometry can be

extended directly to anarboreal representations, such as Mochizuki’s celebrated resolution of the

Grothendieck conjecture for sub-p-adic fields, which already proves the Grothendieck conjecture

for limits of hyperbolic curves [25]. None of these applications use the distinguished endomorphism

ϕ of Π̄, and it would be interesting to know if incorporating this extra information could lead to

simpler proofs of these facts for dynamical anabelian representations.

Lastly, we remark that the grand critical arboreal representations play a distinguished role

in this chapter and the definition of anarboreal representations. However, more general arboreal

representations are important in arithmetic dynamics. For instance, Odoni’s Conjecture (in various
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forms) predicts that arboreal representations are “very large” over number fields with only mild

restrictions on the base point and rational map. These representations are not intrinsic to an

unmarked dynamical system, but still quite interesting. One way to fit them into our formalism is

to further puncture P1 at the grand orbit of the base point.

3.7 Recovering the Iterated Monodromy Representation

Anabelian ideas have already entered arithmetic dynamics by way of iterated monodromy groups,

which form the focus of Pink’s seminal work [30, 29, 28] on representations associated to quadratic

polynomials, especially post-critically finite polynomials. These iterated monodromy groups are

rather smaller than the étale fundamental groups just defined, and do not admit an endomorphism

corresponding to f(x), but they do capture a great deal of dynamical information.

Definition 3.15. Let f(x) ∈ K(x) be a rational map with critical locus C. As such, f : P1
K → P1

K

is a branched cover, ramified at C with branch locus f(C). More generally, fk : P1
K → P1

K is a

branched cover ramified at
⋃k−1

i=0 f−i(C) and with branch locus
⋃k

i=1 f
i(C). These fit into a natural

tower ...→ P1
K

f→ P1
K

f→ P1
K .

The Galois closure of this tower is the splitting field L of all fk(x)− t over K(t), and its Galois

group Garith is the arithmetic iterated monodromy group. Repeating this construction after

base change to K̄, results in Ggeom, the geometric iterated monodromy group.

If we fix a point x0 ∈ P1
K which is not post-critical, the Galois group is determined by its

monodromy action on the preimages of x0 by f(x). These preimages naturally have the structure

of an infinite d-regular rooted tree T , and so Garith may be identified with a subgroup of Aut(T ).
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We see immediately that these monodromy groups are a quotient of our large anarboreal rep-

resentations corresponding to the union of the Galois closures of the covers fk : U∞ → U∞.

Equivalently, if we let Mn = img ϕn and Nn the kernel of the translation action of U∞ on the cosets

of Mn, the iterated monodromy group is the quotient by
⋂
Nn.

Pink is primarily interested in understanding the action of ΓK on the quotient Garith/Ggeom.

This is the Galois group of the constant field of L over K. A loose interpretation of Pink’s method

is that it precisely identifies Ggeom within Aut(T ) and carefully studies conjugacy within Aut(T ),

showing that if two subgroups are element-wise conjugate, they are themselves conjugate. It is

well-known that the action of ΓK on generators factors through the cyclotomic character modulo

conjugacy (the so-called branch cycle argument) but Pink’s deep understanding of conjugacy within

Aut(T ) allows him to place vastly stronger restrictions on this action.
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Chapter 4

The Néron-Ogg-Shafarevich Criterion

In this chapter, we use the formalism of Chapter III to apply A. Tamagawa’s anabelian criterion

for good reduction [40] to the good critical reduction of dynamical systems on P1, and use this as

a starting point to give a dynamical characterization of those arboreal representations which are

infinitely ramified. The content of this chapter is based on the author’s preprint [37].

4.1 Good Reduction III

Tamagawa’s criterion extends more or less immediately by taking a limit.

Theorem 4.1. Let K be a p-adic field with ring of integers OK , residue characteristic p, and

f : P1
K → P1

K a nearly étale dynamical system. Let V∞ be P1
K punctured at the critical divisor

D. Then the dynamical system has good critical reduction if and only if the (outer) action of Γ on

π1((V∞)K̄ , x̄)(ℓ), the pro-ℓ completion of π1((V∞)K̄ , x̄)) for some (all) ℓ ̸= p, is unramified.

Proof. Extended to pro-divisors, Tamagawa’s anabelian criterion for good reduction [40, p. 5.3]

tells us that the Galois action on the pro-ℓ geometric fundamental group of U∞ is unramified if

and only if the dynamical system has good critical reduction, with smooth model (P1
OK

,D). Since

the dynamical system has good critical reduction, f(x) has good reduction by Proposition 3.13

and hence extends to an endomorphism f : X→ X. Since the map has good critical reduction, the

critical pro-divisor is relatively étale and its restriction to the generic fiber is D. □
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Corollary 4.2. In the notation of Theorem 4.1, the following are equivalent:

1. f has good critical reduction,

2. the dynamical incidence graph of f has no undirected edges,

3. the dynamical incidence graph of f has no cycles.

Readers familiar with Tamagawa’s result are likely aware that it is straightforward to prove by

elementary means in the genus 0 case – one can directly construct ramified covers from a divisor

which is not relatively étale. The rest of the chapter proceeds largely by following these elementary

methods to the covers by f(x), but while tracking more data related to the dynamics.

4.2 Stepwise Simple Reduction

Evidently, Lemma 2.12 will allow us to determine when a branch representation is infinitely ramified,

and to describe the asymptotic growth of the ramification index if we can find coordinates where

the rational function f admits such a power series expansion. It remains to develop some machinery

to relate the ramification of a branch representation to the existence of such a coordinate.

Definition 4.3. Take a branch (αn)n∈N for a rational map of height 0. We say that the branch

has stepwise simple reduction if, for all n, α̃n+1 is a simple root of f̃(x)− α̃n. Additionally, we

say that a branch has eventually stepwise simple reduction if it has stepwise simple reduction

after removing an initial segment.

Stepwise simple reduction is a separability condition, and hence is closely related to the reduction

of the critical points of f(x).
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Lemma 4.4. Assume f(x) has height zero, and let (αn)n∈N be a branch which does not have

stepwise simple reduction. Then there is a critical point c of f(x) whose reduction c̃ is periodic,

and the entire residual branch is residually periodic, with its entries given by the orbit of c̃.

Proof. If the branch does not have stepwise simple reduction, then there are infinitely many n such

that α̃n is a multiple root of f̃(x)− α̃n−1, and this can occur only when α̃n a critical point of f̃ .

Thus for each such n there is a residual critical point c̃n of f(x) such that c̃n = α̃n. Since f(x)

has height zero, its derivative is nonzero and therefore f(x) has only finitely many residual critical

points, and each is the reduction of a critical point of f(x). The sequence (c̃n)n∈N repeats one of

those values infinitely often, and therefore that residual critical point is residually periodic, and the

branch below any entry where it appears is periodic. Since the value reappears arbitrarily high in

the residual branch, the whole residual branch is periodic. □

When the height h is larger than zero, the derivative of f̃(x) = Q̃f (x
ph) vanishes, so every point

is residually critical, and hence no branch can have stepwise simple reduction. On the other hand,

any choice of Qf has height zero and hence Qf can have branches with good critical reduction.

Observe that, residually, f̃ is the composition of a rational map of height zero with a power of

the absolute Frobenius. So it is then natural think of f(x) as being a residual twist of Qf by Φh.

This suggests a natural untwisting process for branches for rational maps of positive height.

Lemma 4.5. Let f(x) be a rational map of height h. Let Φ be the absolute Frobenius automor-

phism of the residue field. Assume that the coefficients of f̃(x) are fixed by Φh. Then there is a

correspondence between residual branches for f̃(x) and branches for Q̃f (x) over the residue field:

(α̃n)n∈N ⇐⇒ (Φ−hn(α̃n))n∈N
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Proof. Since Φh fixes the coefficients of f̃(x) = Q̃f (x
ph), it commutes with Q̃f . Then

α̃n−1 = f̃(α̃n) = Q̃f (α̃
ph

n ) = Q̃f (Φ
h(α̃n)) = ΦhQ̃f (α̃n).

Inductively,

α̃0 = f̃n(α̃n) = Φnh(Q̃f (αn))

Therefore, (Φ−nh(α̃n))n∈N forms a branch (over the residue field) for Q̃(x). Reversing this

process turns a branch for Q̃f into a branch for P̃ (x). □

Adopting the convention that Φ0 = Id, it is natural to incorporate the “untwisting” into Defi-

nition 4.3 and combine Lemmas 4.4 and 4.5 to treat all heights at once.

Definition 4.6. Let f(x) be a rational function of height h. A branch (α̃n)n∈N for f is said to have

stepwise simple reduction if the corresponding “untwisted” residue branch (Φ−hn(α̃n))n∈N for

the height zero rational map Q̃f has good critical reduction in the sense of Definition 4.3.

Proposition 4.7. Suppose f(x) is a rational map with height h, so that f̃(x) = Q̃f (x
ph) and let

(αn)n∈N be a branch for f(x). If the branch does not have eventually stepwise simple reduction,

then it is residually periodic.

Proof. If h = 0, this is exactly the statement of Lemma 4.4, so assume h is positive.

Consider an iterate fk, which will have height hk, so that residually f̃k(x) = R̃(xp
hk
) where

R′(x) ̸= 0. This iterate has coefficients in the same ground field as f(x), so it is possible to choose

a k such that Φhk fixes all the coefficients of f(x).

If the branch (Φ−hnα̃n)n∈N for Q̃f is not residually stepwise simple for Q̃f , then neither is the

sub-branch (Φ−hnkα̃nk)n∈N for S̃(x). Therefore the untwisted branch is residually periodic; in other
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words, contained in a finite extension of the residue field. The automorphism Φh of this residue

field has finite order, and so the twisted branch is still periodic, though possibly of larger period.

Since the subbranch is residually periodic, so too is the original branch; again the period may

be larger. □

4.3 Main Results

Theorem 4.8. Let K be a finite extension of Qp and f(x) ∈ K(x) a rational map of degree at least

two. Let Cf denote the full critical locus of the dynamical system (equivalently, the pro-divisor of

pre-critical points). Assume that f has height zero. The following are equivalent:

(a) The dynamical incidence graph Cf has a directed cycle (i.e. a cycle with at least one directed

edge).

(b) For all ϵ > 0, there exists an α ∈ K and critical point c of f(x) such that |α − c| < ϵ and a

branch over α is infinitely ramified. If c is not periodic, we can take α = c.

(c) Some branch representation associated to f : X → X is infinitely ramified.

When (b) or (c) above occurs, the aforementioned branch (αn)n∈N is residually periodic and

there is a pre-critical branch {γn}n∈N for f(x) such that |αn − γn| < 1 for all n. Let m be the

exact period of the reduction of the branch and e the ramification index of f(x) on the branch;

see Definition 2.9. Then for all sufficiently large n, the extension K(αn+m) over K(αn) is totally

ramified of degree e. In other words, the ramification index of K(αn) over K grows like Cen/m for

some constant C.

Proof. (a)⇒(b) Suppose that C has a directed cycle. Replacing f(x) by an iterate, we may assume
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that this cycle has a single directed edge – in other words, the cycle now gives rise to a fixed point

on the special fiber. Since we are working with the full critical locus, we may apply f(x) to push

the cycle down until it contains a critical point of f(x). Without loss of generality we may assume

that f(0) = 0 and that 0̃ is the fixed point (i.e. our cycle) on the special fiber. If c is not periodic,

let α = c. Otherwise let α be any element of K with sufficiently high valuation. This guarantees

that no branch based at α is periodic.

Now take preimages by f(x) while holding the special fiber fixed, so as to obtain a branch

(αn)n∈N which does not eventually have stepwise simple reduction, because f̃(x)− α̃n = f̃(x) will

have a multiple root at 0̃ for all n. Because the branch is not periodic it follows from Lemma 2.12,

applied to the power series expansion of f(x) around 0, that the branch is infinitely ramified. In fact,

the ramification index at each step eventually grows as a power of the ramification index of f(x)

as a power series around 0, and hence has infinite pro-ℓ component for some prime ℓ ≤ deg f < p.

(b)⇒(c) Trivial.

(c)⇒(a) Suppose there is some infinitely ramified branch, not necessarily critical. Then by

Lemma 4.4, the restriction of this branch to the special fiber is periodic and given by the orbit

of the reduction of a critical point. This residually periodic critical orbit immediately gives rise

to a directed cycle in the critical incidence graph, as well as one in any arboreal representation

containing the branch. This completes the proof that (c) implies (a).

Finally, in (b) and (c) we have just seen that the branch is residually periodic, and hence we

can apply Lemma 2.12 to fm, which verifies the claim about the eventual ramification behavior of

the branch. □

Remark 1. One can view f : X → X as a family of dynamical systems over OK . Theorem 4.8
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says that f exhibits dynamical stability if and only if the pre-critical arboreal representation and

nearby representations are unramified. In other words, bifurcation is detected by ramification in

the Galois action.

Given an arboreal representation whose associated dynamical incidence graph has an undirected

cycle, the representation on the étale fundamental group will be ramified, but the arboreal rep-

resentation need not be. However, moving the base point allows this ramification to be detected,

although it will only result in a finite amount of ramification.

Theorem 4.9. Continue to use the notation of Theorem 4.8. The following are equivalent:

(a) The full critical dynamical incidence graph has an undirected cycle.

(b) Some branch extension (αn)n∈N for f(x) is ramified.

In fact, given any critical branch (γn)n∈N which has a member lying in an undirected cycle of

the critical incidence portrait, there is a ramified branch (αn)n∈N such that |αn − γn| < 1 for all n.

Proof. Without loss of generality, we may assume that there are no directed cycles on any of the

graphs in question, as otherwise Theorem 4.8 immediately verifies the claim.

(a)⇒(b) If there is an undirected cycle, then there is such a cycle with only two members, q

and r. We may assume q and r are preimages of the same critical point c. Then there are integers

m and n such that fm(q) = fn(r) = c. If m ̸= n, this would give rise to a directed cycle, contrary

to assumption, so m = n. Taking the minimal such m, we see that fm−1(q) and fm−1(r) are both

preimages of c, which meet on the special fiber. So we may replace the original initial cycle, q and

r, with fm−1(q) and fm−1(r). After possibly making a change of coordinates, we may assume that

none of c, q, are r at the point at infinity. In particular, they have counterparts c, q, and r in K

with which we can perform usual arithmetic calculations.

43



Now let α0 ∈ K be any point such that vK(α0+f(q)) = 1 – we have replaced the fraktur letters

with their standard counterparts to emphasize that we now . There is a branch for f(x) based at

α0 which is ramified. Observe that the choice of α0 in combination with the fact that f ′(c) = 0

guarantees that f(x+ q)−α0 has a root with non-integer valuation: consider the Newton polygon

after expanding f(x + q) − α0 as a power series around 0. The corresponding root of f(x) − α0

therefore gives rise to a nontrivial ramified extension, and any branch containing it will suffice.

(b)⇒(a) If a branch (αn)n∈N is ramified, then the reduction of some f(x)−αn has a double root.

This double root must be a residual critical point of f(x), and hence gives rise to an undirected

edge (hence undirected cycle) in the critical dynamical incidence graph.

The final remark follows from the fact that the branches in question are all residually pre-

critical, and hence entrywise close to a pre-critical branch. However, the ramified branch cannot

always be made arbitrarily close to a pre-critical branch. □

Combined, Theorems 4.8 and 4.9 tell us that, in a sense, “all” of the possibilities for ramification

associated to branches for f(x) can be understood by looking at the pre-critical locus and branches

based on annuli around it.

Theorem 4.10. Assume that p > d = deg f , in particular f has height zero. If an arboreal

representation is infinitely ramified, one of its branch representations is infinitely ramified.

Proof. Evidently if some branch is infinitely ramified, so too is the arboreal representation.

Let T be the dynamical incidence portrait associated to the preimage tree. If no branch repre-

sentation is infinitely ramified, then T can have no directed cycles by Theorem 4.8. As such, a given

branch can ramify at most 2d− 2 times, corresponding to the residual critical points lying on the

branch. Therefore, the ramification index is bounded uniformly by (d!)2d−2 across branches. This
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ramification is tame because we have assumed p > d, so by Abhyankar’s lemma the ramification

in all the branches can be trivialized by replacing K with any totally tamely ramified extension of

degree (d!)2d−2. Thus the full arboreal extension, obtained as the compositum of all the branch

extensions, is unramified after a finite base change, and therefore only finitely ramified over K. □

Remark 2. The previous theorem holds when the ramification is wild. One must take care to

show that after an unramified base change which is independent of the branch, some initial segment

of the branch is totally ramified of bounded degree, and afterward unramified. A p-adic field has

only finitely many extensions of bounded degree and so there is a single finite base change which

trivializes all the possibilities for ramification.

4.4 Applications

4.4.1 Post-Critically Finite Maps

Our results are especially powerful when applied to post-critically finite maps over number fields.

Combining the main result of this paper with that of [36], we can exactly and effectively de-

termine which primes are infinitely ramified in branch representations of of post-critically finite

polynomials of prime-power degree with good reduction.

Corollary 4.11. Suppose f(x) is a post-critically finite rational map with everywhere good reduc-

tion defined over a number field K. Let ∆f be the (necessarily finite) set
⋃

f ′(c)=0{c− fn(c) | n ∈

N+}. Then a prime p of K for which f(x) has height zero is infinitely in ramified in some arboreal

representation if and only if p divides a member of ∆f .

In fact, an arboreal representation with base point α ∈ K is infinitely ramified at a prime p of

good reduction for which f(x) has height zero if and only if there is a critical point c of f(x) which
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is periodic modulo p and α is in the orbit of c modulo p.

There are only finitely many primes for which f(x) has nonzero height, as such a prime has to

divide its degree.

Example. Let c be a root of t3 + 2t2 + t + 1, and set f(x) = x2 + c. This is the post-critically

finite map associated to the Douady rabbit. The critical orbit is

{0, c, c2 + c,∞},

where the first three points form a periodic cycle and the last is fixed.

This polynomial has everywhere good reduction, and only has positive height for primes lying

over 2. Since all the critical points are periodic, for any prime p not dividing 2 there is an arboreal

representation for f(x) which is infinitely ramified at p. The base point for this representation can

be chosen to be p-adically near any periodic point of f(x).

For any particular base point α ∈ K which is not periodic for f(x), the arboreal representation

can only ramify at one of the finitely many prime p which divide one of α, α − c, α − c2 − c, or

α−∞ where a prime p divides the latter if and only if 1
α is divisible by p.

As far as ramification at divisors of 2, this is a post-critically finite map of prime degree, so

the main result of [36] implies that all such primes are infinitely ramified, and in fact deeply wildly

ramified in a precise way.

To be even more concrete, if we take α = 5 then it is straightforward to check that the arboreal

representation is infinitely ramified at exactly the following primes: 2, and the ideals (5 − α),

(2α2 + 3α+ 1), (α2 + 2α+ 3), which lie over 181, 7 and 19, respectively.
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4.4.2 Post-Critically Infinite Maps

The pre-critical arboreal representations of post-critically infinite maps over global fields exhibit

surprising behavior in contrast to abelian varieties: these arboreal representations are infinitely

ramified at infinitely many primes, while the representation on the Tate module of an abelian

variety can only ramify at finitely may primes.

Proposition 4.12. Let f(x) be a rational map defined over a number field K, and c a critical

point of f(x) whose orbit is infinite. Then the arboreal representation associated to f(x) and c is

ramified at infinitely many primes.

Proof. It follows from results of Silverman [35] that there are infinitely many primes modulo which

c is periodic. Restricting to primes of good reduction and where f(x) has height zero, we obtain

infinitely many primes q such that c̃ is periodic. The relationship f̃n(c̃) = c̃ gives rise to a directed

cycle on the full critical dynamical incidence graph, and since c itself is not periodic, Theorem 4.8

guarantees that a branch over c is infinitely ramified at q. □

A dynamical system over SpecOK restricts to a family of dynamical systems over SpecS−1OK ,

for any finite set of primes S. As was pointed out in Remark 1, an arboreal representation ramified

at p is dynamically unstable; Proposition 4.12 says that dynamical systems over number fields are

very badly unstable at many primes.

Remark 3. On the other hand, it is the author’s suspicion that, at least for “most” rational maps,

only arboreal representations based at a point in the forward or backward orbit of a critical point

can be infinitely ramified at infinitely many primes. The reason is that for such primes, not only

must there be a critical point which is periodic modulo infinitely many primes, but the residual
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orbits of that critical point must contain the base point in their orbits as well. In other words,

there must be infinitely many primes which divide an entry from both

{Pn(c)− c | n ∈ N} and {Pm(c)− α0 | m ∈ N}

Both sets are fairly sparse, and explicit computer calculations seem to indicate that they are unlikely

to have many prime divisors in common.

4.4.3 Abelian Dynamical Extensions

Abelian dynamical extensions, especially over global fields, have attracted significant interest re-

cently [4, 15]. In fact, it is known that if an arboreal representation for a rational map f(x) over

a number field is abelian, then f(x) must be post-critically finite [15]. We can recover this by

purely local methods in the special case of full critical arboreal representations: if any critical point

has infinite orbit, then Proposition 4.12 furnishes infinitely many primes at which the arboreal

representation is infinitely tamely ramified. But no such extension can be abelian – in fact, the

associated decomposition subgroup already fails to be abelian, and even remains nonabelian after

any finite base change. So not only does this arboreal representation fail to be abelian, it is quite

farm from abelian: it has infinitely many infinite nonabelian decomposition groups.

Of the known examples of abelian arboreal representations, many are pre-critical, such as the

Lattés maps appearing in explicit class field theory of totally imaginary quadratic fields, or the

trivial case of a powering map based at zero.

Moreover, the constraints we obtain on ramification are particularly precise for PCF rational

maps. In combination with global class field theory, this goes a long way towards restricting the

possibilities for abelian arboreal representations.
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Chapter 5

Higher Ramification and Sen’s Theorem

In the previous chapter, our main results required a restriction to rational maps with height zero.

For abelian varieties, this corresponds to studying Tℓ for ℓ ̸= p. It is natural to wonder what

happens when ℓ = p. For elliptic curves, this motivated the theory of crystalline representations,

and p-adic Hodge theory more generally. While we lack (as yet) a dynamical analogue for the

classification furnished by p-adic Hodge theory, developing one would be extremely interesting. It

is worth noting that p-adic Hodge theory itself already makes use of dynamical constructions such

as the maximal cyclotomic extension or the tower of radical extension Qp( ∞
√
p) and has even been

applied to questions in arithmetic dynamics [8, 39].

An important early result in the foundations of p-adic Hodge theory is Sen’s theorem, which says

that when a Galois extension L/K is a p-adic Lie group, the natural Lie filtration (which essentially

corresponds to iterating the multiplication-by-pmap) and the higher ramification filtration mutually

refine each other up to change of index. In this chapter, we prove a dynamical analogue of Sen’s

theorem which replaces the Lie filtration with a dynamical “branch filtration”. The content of this

chapter is largely based on the author’s paper [36].

5.1 Notation

In this chapter, we require some further notation, and will also restrict the class of rational maps

we study. Through this chapter we make the following assumptions:
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- f(x) ∈ OK [x] is a polynomial,

- f has good reduction,

- deg f = q = pr,

- f(0) = 0,

- f(x) = xq = xp
r
modulo πK ,

- α0 ∈ K, the base point, has nonzero valuation.

While seemingly restrictive, we will see that all post-critically bounded polynomials can be put

in this form. Even the choice of base point causes no trouble – the essence of that condition is that

the base point is p-adically near a fixed point, and when f(x) = xq modulo πK , there is always some

iterate of f with a fixed point near the base point. We note that this dynamically interesting family

includes all post-critically finite polynomials of prime-power degree, whose arboreal representations

have attracted significant interest over global fields [1, 10].

5.2 Post-Critically Bounded Polynomials

The main results of this chapter apply to a fairly general family of polynomials, but were first

motivated by computations with post-critically finite polynomials. In this section, we prove that

all post-critically bounded polynomials are in this family.

After possibly extending the ground field, we will be able to make a change of coordinate such

that f is monic, has integral coefficients, fixes zero, and reduces to a powering map modulo π. In

fact, we will show that its coefficients satisfy certain inequalities, and this is what ensures PCB
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polynomials will be in the family we consider. A few other versions and proofs of Proposition 5.1

appear in the literature [2, 14, 6].

Proposition 5.1. If a polynomial, not necessarily with good reduction, has degree q = pr and is

post-critically bounded, then it has a polynomial conjugate f which is monic, integral, fixes 0, has

explicit good reduction and further satisfies

v(fi) + v(i) ≥ v(q) = rv(p) for all 1 ≤ i ≤ q.

Proof. Let g(x) be the initial polynomial. After conjugating, we may assume that g(x) is monic

and fixes zero; conjugates also remain post-critically bounded. This conjugation may require taking

a (p− 1)th root of the leading coefficient of g(x) (at most tame) and adjoining a fixed point of g to

the ground field. Call this conjugate f(x). While f(x) does not necessarily have integral coefficients

at this point, we will show that f ′(x)
q is in OK [x], from which the claimed inequality of valuations

follows, and hence integrality as well.

Suppose otherwise, that f ′(x)
q is not in OK [x]. This guarantees a positive slope in the Newton

polygon for f ′(x)
q , the steepest slope of which ends at the vertex associated to the leading term.

This slope must be strictly steeper than the steepest slope of the Newton polygon of f(x) because

every non-leading vertex moves down in passing from f(x) to f(x)
q . However, this means if we take a

critical point associated to this steepest slope, v(f(c)) = qv(c) < v(c), hence v(f2(c)) < q2v(c) and

so on, therefore v(Pn(c))→ −∞ and hence the critical orbit is unbounded, a contradiction. □

This only tells us that a post-critically bounded polynomial has some conjugate of the desired

form. Conjugation moves the base point, and a priori could leave us with a base point of valuation

zero, contrary to our requirements. It turns out that, after possibly replacing f(x) by an iterate,
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there is always a choice of conjugate such that the new base point has nonzero valuation. This is

elaborated on in Section 4.2.

Eventually, we will look at Nn and coNn, the Newton polygon and copolygon associated to

f(x + αn) − αn−1. When we expand this expression, the coefficients of the resulting polynomial

involve binomial coefficients, and so to understand these polygons we need some control over the

binomial coefficients as well. For visual simplicity we drop a set of parentheses when taking the

valuation of binomial coefficients,

v

((
m

n

))
= v

(
m

n

)
.

Lemma 5.2. Assume that the valuation v is normalized so that v(p) is an integer. Fix a positive

integers i, j, k with j ≥ i and j ≥ pk.

(i) If pk ≤ i < pk+1, then

v

(
j

i

)
≥ v

(
j

pk

)
.

(ii) Additionally,

v

(
j

pk+1

)
≥ v

(
j

pk

)
− v(p),

with equality if and only if v
( j
pk

)
̸= 0.

Proof. Both claims follow from Kummer’s theorem [20], which states that the p-adic valuation of a

binomial coefficient
(
j
i

)
is cv(p), where c is the number of carries when adding i and j− i in base p.

Applying that theorem, we see that a lower bound for the valuation of
(
j
i

)
when the leading

base p digit of i is in the ℓth place is the number of consecutive zeros in the base-p expansion of j

starting at the ℓth digit. Notice that if i = pℓ then this is exact, but it can be larger in general,

from carries that occur before the ℓth digit.
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The condition pk ≤ i < pk+1 says exactly that i’s leading base p coefficient is in the kth place.

From these observations, (i) and the inequality of (ii) are immediate by taking ℓ = k and

ℓ = k + 1. As to the last claim: the valuations in question are nonnegative integers, so equality is

impossible if v
( j
pk

)
is zero, and conversely if v

( j
pk

)
is nonzero then the change from pk to pk+1 loses

exactly one of the aforementioned zeros in its base p expansion. □

5.3 Higher Ramification and the Newton (co)Polygon

We briefly summarize some facts about the higher ramification groups and especially the Hasse-

Herbrand transition function. This section is essentially a summary of Lubin’s exposition of higher

ramification [22], to which we refer the reader for complete proofs.

Definition 5.3. Let g(x) be a Laurent series in OK((x)). The Newton polygon of g(x) is defined

to be the lower convex hull of the set {(i, v(gi)) | i ∈ Z} inside R2. The Newton copolygon of

g(x) is the dual to the Newton polygon in the sense of convex bodies. Explicitly, the Newton

copolygon can be viewed as the graph of the following function from R to R:

Tg(u) = min
i∈Z
{gi + iu}.

We remark that the copolygon Tg might be more productively viewed as the tropicalization of

the curve y = g(x) with the infinite vertical edges deleted. The fact that tropicalization is functorial

can make the Newton copolygon more convenient to work with than the Newton polygon; on the

other hand, the Newton polygon is typically easier to calculate. The primary reason the graph

must be considered is to count multiplicities of zeros of g(x) associated to the vertices. Given a

sufficiently nice theory of tropical schemes, one could work with the tropicalization of g(x) = 0

instead.
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In this chapter, we are interested in a particular family of Newton (co)polygons.

Definition 5.4. Let (αn) be a branch of f(x). We define Nn and coNn to be the Newton polygon

and copolygon, respectively, of f(x+αn)−αn−1. Though it does not appear in the notation, these

invariants depend on the branch.

Since we have already fixed a branch and will only modify it by re-indexing, no confusion should

arise from leaving it out of the notation.

5.4 Asymptotic Shape of (co)Nn

Using Lemma 2.12, we are able to take a step towards more precise information about the Newton

polygons Nn. In particular, for large n their shape essentially stabilizes up to explicitly given errors.

Lemma 5.5. We continue to assume deg f = q = pr. For n sufficiently large, the Newton polygon

Nn of f(x+ αn)− αn−1 has at most r + 1 vertices, whose x-coordinates can only be powers of p.

Thus Nn is the lower convex hull of the points (pk, ypk), where the height ypk is given by

ypk = min
pk≤j≤q

{
v

(
j

pk

)
+ v(fj) + (j − pk)v(αn)

}
.

Proof. Let g(x) = f(x+ αn)− αn−1. Expanding and collecting terms, we see that

gi =

q∑
j=i

(
j

i

)
fjα

j−i
n .

Hence

v(gi) ≥ min
i≤j≤q

{
v

(
j

i

)
+ v(fj) + (j − i)v(αn)

}
. (5.1)

The fractional parts of the terms in the minimum, which come from (j−pk)v(αn), are all distinct

so long as 0 < |v(αn)| ≤ 1
q , and from Lemma 2.12 we know this is the case for all sufficiently large
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n. As such, the terms themselves are distinct and so the inequality (5.1) is actually an equality.

Additionally, v(Q1) ̸=∞ since the minimum in (5.1) is evidently finite.

Since g0 = 0, but g1 ̸= 0, the Newton polygon has a vertical line through (1, v(g1)). The leading

coefficient is 1, so there is another vertex at (q, 0).

To show that Nn only has vertices at prime powers, we will prove something slightly stronger:

that v(gi) for i between pk and pk+1 has valuation at least v(gpk)+(pk− i)v(αn), or, in other words,

such points (i, Qi) are above the line through (pk, v(gpk)) with slope −v(αn). Because |v(αn)| ≤ 1
q ,

the slope of that line through (pk, v(gpk)) is so shallow, that this line always passes above (q, 0) and

so no point above this line can be a vertex whether or not (pk, gpk) is itself a vertex. Since we will

prove that every point strictly between pk and pk+1 does lie above such a line, none of them can

be vertices, hence the only admissible locations for vertices are at prime powers.

And so we compute, for pk ≤ i < pk+1:

v(gi) = min
i≤j≤q

{
v

(
j

i

)
+ v(fj) + (j − i)v(αn)

}
= min

i≤j≤q

{
v

(
j

i

)
+ v(fj) + (j − pk)v(αn)

}
+ (pk − i)v(αn)

≥ min
pk≤j≤q

{
v

(
j

i

)
+ v(fj) + (j − pk)v(αn)

}
+ (pk − i)v(αn) (5.2)
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This is nearly the desired inequality, but with v
(
j
i

)
rather than v

( j
pk

)
. To resolve this issue, we

apply Lemma 5.2, which tells us that if pk ≤ i < pk+1, then

v

(
j

i

)
≥ v

(
j

pk

)
.

Continuing where we left off at (5.2):

v(Qi) ≥ min
pk≤j≤q

{
v

(
j

pk

)
+ v(fj) + (j − pk)v(αn)

}
+ (pk − i)v(αn)

= v(gpk) + (pk − i)v(αn)

as was to be shown.

Lastly, ypk is simply v(gpk), which is given by (5.1). □

In the preceding description of the heights of the points defining Nn, one might notice that for

sufficiently large n, the “error terms” (j − pk)v(αn) appearing in the minimum are very small. So

we should expect the polygons Nn to be quite similar when n is large. This is the case, as we will

prove shortly, although tracking these error terms make the proof less clear than we might like.

While it is tempting to consider just limn→∞Nn (as functions on R) this shape may have fewer

vertices than all of the Nn. Carefully following the error is what allows us to establish that the

number of vertices is independent of n, for n sufficiently large.

The main idea is that the height of each point defining Nn has a main term and an error term.

Sometimes, one can identify a vertex or non-vertex simply by the position of its main term relative

to the other main terms, because the error is small. When vertices are not distinguished by the

main term, it must be the error term distinguishing the vertex, and there is sufficient regularity in

these error terms that when a vertex appears in Nn due to the error term, it continues to do so for

Nn+1 and so on.
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This important, but technical, geometric fact is made precise by the following lemma.

Lemma 5.6. Let m,m′,m′′ and 0 ≤ e, e′, e′′ ≤ q − 1 be nonnegative integers, 0 ≤ s < t < u ≤ r

positive integers, and |C| ≤ 1 a constant.

For n ≥ 2, define the following sequences of points:

Pn =

(
ps,m+ e

C

qn

)
,

P ′
n =

(
pt,m′ + e′

C

qn

)
,

P ′′
n =

(
pu,m′′ + e′′

C

qn

)
.

Then the point P ′
n lies below the line connecting the points Pn and P ′′

n if and only if the point

P ′
n+1 lies below the line connecting the points Pn+1 and P ′′

n+1.

Proof. The key observation (∗) is the following: the slope of a line between any two lattice points

over pu and ps has denominator pu−ps, which is always smaller than q−1, so if such a line doesn’t

pass through some lattice point, the closest it can approach that lattice point is at a vertical distance

of 1
q−1 .

With that in mind, P ′
n lies below the line connecting Pn and P ′′

n if and only if

m′ + e′
C

qn
<

pt − ps

pu − ps

(
m+ e

C

qn

)
+

pu − pt

pu − ps

(
m′′ + e′′

C

qn

)
. (5.3)

Our goal is to show that (5.3) holds with n+ 1 in place of n:

m′ + e′
C

qn+1
<

pt − ps

pu − ps

(
m+ e

C

qn+1

)
+

pu − pt

pu − ps

(
m′′ + e′′

C

qn+1

)
. (5.4)

We can see that inequality (5.3) roughly decomposes into two pieces: one involving only the

main terms m,m′,m′′, and one involving just the error terms e, e′, e′′. This leads us to consider
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two cases:

m′ ≤ pt − ps

pu − ps
m+

pu − pt

pu − ps
m′′ (5.5)

and

m′ >
pt − ps

pu − ps
m+

pu − pt

pu − ps
m′′. (5.6)

Case 1. If (5.5) holds, then subtracting it from (5.3) and dividing by q yields

e′
C

qn+1
<

pt − ps

pu − ps
e

C

qn+1
+

pu − pt

pu − ps
e′′

C

qn+1
. (5.7)

Adding (5.7) back to our assumption (5.5) yields the desired inequality (5.4). These manipulations

can be reversed, so (5.5) is equivalent to (5.4) in this case.

Case 2. If (5.6) holds instead, we will have a contradiction. By our key observation (∗), the

fact that (5.6) is a strict inequality means that

m′ − pt − ps

pu − ps
m− pu − pt

pu − ps
m′′ ≥ 1

q − 1
(5.8)

However, we can rearrange (5.3) to obtain

m′ − pt − ps

pu − ps
m− pu − pt

pu − ps
m′′ < −e′ C

qn
+

pt − ps

pu − ps
e
C

qn
+

pu − pt

pu − ps
e′′

C

qn
. (5.9)

The left hand side is at least 1
q−1 by (5.8), but the right hand side is too small to allow this:∣∣∣∣−e′ Cqn +

pt − ps

pu − ps
e
C

qn
+

pu − pt

pu − ps
e′′

C

qn

∣∣∣∣ = ∣∣∣∣−e′ + pt − ps

pu − ps
e+

pu − pt

pu − ps
e′′
∣∣∣∣ ∣∣∣∣ Cqn

∣∣∣∣
≤

∣∣∣∣ pt − ps

pu − ps
(q − 1) +

pu − pt

pu − ps
(q − 1)

∣∣∣∣ ∣∣∣∣ Cqn
∣∣∣∣

= |q − 1|
∣∣∣∣ Cqn

∣∣∣∣
≤ (q − 1)

1

q2

<
1

q
. (5.10)

Together, (5.8), (5.9), and (5.10) give 1
q−1 < 1

q , clearly a contradiction. □

58



With Lemma 5.6 in hand, we are ready to prove the final result of this section, a crucial input

to our main results.

Proposition 5.7. There is a positive integer V depending only on the polynomial f(x) and the

sign of v(α0) such that for all n sufficiently large the Newton polygon Nn of f(x+ αn)− αn−1 has

exactly V vertices.

In fact, there are nonnegative integers ri,mi, ei, for 1 ≤ i ≤ V , depending only on f(x) and

v(α0), and a constant C which depends only on the degree q and sequence of valuations (v(αn))n∈N,

such that, for all sufficiently large n, the vertices of Nn are all of the form

(
pri ,mi +

ei
qn

C

)
.

Proof. We start by combining Lemma 2.12 of Chapter 2, which characterizes the good behavior of

ramification for large n, with Lemma 5.5. Together, these lemmas tell us that there is some N such

that |v(αN )| ≤ 1
q2

and all the conclusions of both Lemma 2.12 and Lemma 5.5 hold for n ≥ N . For

the remainder of the proof, we only discuss n ≥ N . Set C = qNv(αN ); this is independent of our

choice of N , which we can see by again applying Lemma 2.12:

qnv(αn) = qn
v(αN )

qn−N
= qNv(αN ) = C, (5.11)

from which it also follows that, for all n ≥ N , v(αn) =
C

qn
.

Now, recall the description of Nn given by Lemma 5.5: it is the lower convex hull of the points

(pk, ypk), where

ypk = min
pk≤j≤q

{
v

(
j

pk

)
+ v(fj) + (j − pk)v(αn)

}
.

Since |v(αn)| ≤ 1
q2

and |j − pk| ≤ q − 1,

|(j − pk)v(αn)| < 1,

59



while v
( j
pk

)
+v(fj) is an integer. Moreover, all the terms (j−pk)v(αn), for k fixed and n, j varying,

have the same sign, and so the index j which achieves the minimum is determined entirely by the

“main term” v
( j
pk

)
+ v(fj) except when ties must be broken. The ties always break the same way,

and depend only on the sign of v(α0): in the integral case, one takes the smallest index j achieving

the tie value, while in the non-integral case one takes the largest such index. These are the choices

which minimize the expression when there is a tie for the larger contribution of v
( j
pk

)
+ v(fj).

So for each k, the height of the point above pk is

ypk = min
pk≤j≤q

{
v

(
j

pk

)
+ v(fj) + (j − pk)v(αn)

}

with the minimum achieved by a unique index j between pk and q (inclusive). Then define

Mpk = v

(
j

pk

)
+ v(fj),

Epk = j − pk.

The above argument shows that j is independent of n, and hence Mpk and Epk are also independent

of n. It is also clear that these constants are all positive. Moreover, because v(αn) =
C
qn , we see

that

ypk = Mpk +
Epk

qn
C. (5.12)

From (5.12), what remains to be shown is that the number of vertices and the x-coordinates

of the vertices do not depend on n. This follows by induction from Lemma 5.6, which shows that

that if the Newton polygon Nn has a vertex over pt then the Newton polygon Nn+1 does too, and

conversely that if Nn has no vertex over pt, then neither does Nn+1. Thus Nn and Nn+1 and so on

all have the same number of vertices.
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We know that Nn has a vertex over pt if and only if for all s and u such that s < t < u the

point over pt lies below the line segment connecting the vertices over ps and pu. If we let

m = Mps , m′ = Mpt , m′′ = Mpu , e = Eps , e′ = Ept , e′′ = Epu ,

then we are in exactly the situation to which Lemma 5.6 applies: by (5.12) the points Pn,P ′
n,P ′′

n

are the points over ps, pt, and pu defining Nn, while Pn+1,P ′
n+1,P ′′

n+1 are the points over p
s, pt, and

pu that are used to define Nn+1. So the lemma tells us that Nn has a vertex over pt if and only if

Nn+1 also has a vertex over pt.

Thus, by induction, all of the vertices lie over the same x-coordinates for all n ≥ N , and hence

their number, which we call V , is constant. We let ri be the exponents of the prime powers which

appear as x-coordinates; mi be the associated main term Mpvi ; ei the associated error coefficient

Epvi . The arguments above show that these do not depend on the choice of branch, only the

valuations of the coefficients of f(x) and the sign of v(α0). We note that the subscripts indexing

mi and ei are incompatible with the subscripts indexing Mpk and Epk .

To conclude, we let

C = lim
n→∞

qnv(αn).

As was shown in (5.11), the sequence qnv(αn) is eventually constant, so this limit exists; clearly

it only depends on q and the sequence of valuations {v(αn)}n∈N. The proof above shows that C

plays the desired role in defining the heights of the vertices. □

Definition 5.8. In the notation of the preceding proposition, we define the limiting ramification
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data associated to f(x) and the branch:

V (P, (αn)n∈N ) = the number of vertices V,

R(P, (αn)n∈N ) = (r1, ..., rV ),

M(P, (αn)n∈N ) = (m1, ...,mV ),

E(P, (αn)n∈N ) = (e1, ..., eV ),

C(P, (αn)n∈N ) = the constant C.

We refer to these quantities as the “number of vertices”, “vertex exponents”, “main terms”, “error

factors”, and “error coefficient”, respectively.

Since the first vertex is over 1 and the last vertex is (q, 0), defined by a minimum with just one

term, we see that r1 = 0 and rV = r and mV = eV = 0.

As was pointed out in Proposition 5.7, V , R, M , and E, only depend on the (ordered) valuations

of the coefficients of f(x) and the sign of v(α0), while C only depends on the degree q of f(x) and

the sequence (v(αn))n∈N ) of the members of the branch. The calculation of these parameters is

effective, and algorithms for their computation are outlined in Section 4, along with an example.

In fact, the only ineffective step in our results occurs in Lemma 2.12 – the proof of (b) and (c)

does not give an effective determination of “sufficiently large”. There are some cases where this

can be circumvented; for instance, if v(α0) = 1 then it is straightforward to see that, for all n,

f(x)−αn is Eisenstein, which implies (b) and (c) hold for all n. More generally, it follows from our

proof of Lemma 2.12 that if there is some N such that v(αN ) is not divisible by p and has smaller

valuation than any coefficient of f(x), then (b) and (c) hold for all n ≥ N .

One can see quite readily from Proposition 5.7 that the polygons Nn have a pointwise limit

(viewing them as functions on R≥0). Some of what follows can be described in terms of that limiting
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polygon, and at times more simply – for instance, one could avoid using Lemma 5.6. However,

valuable information is lost when working with this limit polygon: it may have fewer vertices than

the actual Newton polygons Nn (this occurs when main terms of vertices, (pri ,mi), are collinear).

The number of vertices V is extremely important for our main result and applications, because

V − 1 is the slope of the linear change of index in our main result. Additionally, it is appealing to

have such an exact description of Nn.

5.5 Dynamical Sen

In this section, we prove the main result of this chapter, explicitly describing the higher ramification

filtration of certain branch extensions, possibly after extending the ground field and adjusting the

index. Such an extension may be required because the dynamics of the ramification can take

some time to stabilize. As we will see shortly, the previous section amounted to showing that

the ramification actually does stabilize. So for technical simplicity, we will now introduce some

assumptions to the effect that we have already reached the region of stable behavior (in other words,

that the results of the preceding section hold immediately for f and α0, without first replacing the

base point by some αN ). At the end we will explicitly work out the reduction of the general case

to the stable case, and the adjustments required.

Besides this, it is also necessary to introduce a “tameness” assumption, that d is not divisible

by p. Recall that d = limn→∞ dn is the eventual valuation of αn with respect to a valuation that

sends πn to 1, and that this limit exists was shown in Lemma 2.12(c). In what follows, we will

want to take a dth root of a certain unit un inside Kn. Recall that the unit un was defined by

αn = unπ
dn
n , and so the presence of this dth root allows us to take a different choice of uniformizer
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πn, such that αn = πd
n. This dth root is not necessarily in Kn, but if p does not divide d, then

we can obtain a dth root of un after an unramified extension of Kn, which does not change the

ramification along the branch. However, if p divides d then the dth root of un might only appear

in a ramified extension of Kn, and this extra ramification interferes with our ability to extract

information about ramification prior to including the dth root. We hope that this restriction can

be relaxed in some or all cases – the study of some special cases suggests that if d = d0p
m where

p ∤ d0, then our results still hold with d0 in place of d. An unfortunate downside of this restriction

is that it means our results are not base-change invariant – if we replace K by an extension with

ramification index divisible by p and linearly disjoint from K∞, then p is guaranteed divide d.

Luckily, we at least have invariance under tame base change.

This leads us to introduce the following property:

Definition 5.9. A pair (f, α0) satisfies is said to be (upper) ramification-stable if it satisfies the

conclusions of Lemma 2.12 and Proposition 5.7 for all n, without the qualification “for sufficiently

large n”. If also p ∤ d, we describe the pair as tamely ramification-stable.

And so Lemma 2.12 and Proposition 5.7 tell us that even if f and α0 are not ramification stable,

there is some N such that f and αN are. In the Galois case, this is equivalent to replacing an

(infinite) profinite group with a finite-index subgroup which, hopefully, retains a lot of information

about the original group.

Given these assumptions, our next goal is to compute the Hasse-Herbrand function of the

extension K∞/K and verify that it is arithmetically profinite, for tamely ramification-stable pairs.

We will break up the computation of the Hasse-Herbrand function of K∞/K into calculating the

Hasse-Herbrand functions for the intermediate extensions Kn/Kn−1, composing those functions
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to obtain the Hasse-Herbrand function of Kn/K, and then pass to the limit. As mentioned in

the introduction, we avoid assuming any of our extensions are Galois (indeed, one would expect

this to be rare in general) so to study higher ramification, we employ the techniques explained

by Lubin [22]. The reader is advised to take some care in passing between this and other sources

(such as Serre [34]) since the ramification groups may be numbered differently; we adopt Lubin’s

convention.

For convenience, we remind the reader of two important polygons: the level n Newton polygon

Nn and its dual, the level n Newton copolygon denoted coNn. The former is the Newton polygon of

f(x+ αn)− αn−1, while the latter is its dual, meaning that coNn has a vertex whose x-coordinate

is the negative of that slope, and the slopes of coNn are the x-coordinates pri of vertices of Nn,

in decreasing order. As such, the copolygon coNn has one fewer vertex than the polygon Nn.

Ramification-stability amounts to the following explicit description of Nn: the Newton polygon Nn

is the lower convex hull of the following points determined by the limiting ramification data:

(
pri ,mi + ei

C

qn

)
1 ≤ i ≤ V.

Proposition 5.10. Suppose the pair (f, α0) is tamely ramification-stable. Then the graph of the

Hasse-Herbrand transition function ϕn for Kn/Kn−1 relative to K can be obtained by applying the

following three transformations to the copolygon coNn:

(1) Increment the x-coordinates of each vertex by sgn(v(α0))(d − 1)v(πn), while modifying the y-

coordinates to preserve the slopes of the segments between them.

(2) Stretch horizontally by a factor of eK/Eq
n.

(3) Stretch vertically by a factor of eK/Eq
n−1.
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The first slope of ϕn is 1 and the last slope of ϕn is 1/q. The x-coordinates of the first and last

vertices of ϕn, are respectively,

−eK/Eq
n(shallowest slope of Nn) + sgn(v(α0))(d− 1)v(α0)

and

−eK/Eq
n(steepest slope of Nn) + sgn(v(α0))(d− 1)v(α0).

Proof. We will prove the proposition in full for the integral case, where v(α0) > 0 and hence d ≥ 1,

and at the end indicate the minor modifications necessary for the non-integral case.

Let P (x) be the minimal polynomial for πn over Kn−1. The Hasse-Herbrand function for

Kn/Kn−1 can be obtained by applying stretches (2) and (3) to the Newton copolygon of P (x+ πn) [22,

Definition 5]. In Lubin’s notation, we are taking K = Kn, k = Kn−1, and k0 = E, and Ψv,F is the

copolygon of P (x+πn); the claimed scaling factors are obtained by expanding eK/k0 = eKn/KeK/E =

qneK/E and similarly ek/k0 = qn−1eK/E . So we only need to show that the copolygon of P (x+ πn)

can itself be obtained by applying (1) to coNn.

In terms of Newton polygons, (1) is equivalent to decreasing all of the slopes ofNn by (d−1)v(πn)

(there is a sign change in the duality between polygon and copolygon!). The Newton polygons of

P (x+πn) and f(x+αn)−αn−1 encode the valuations of the roots of the corresponding polynomials.

These roots are of the form πσ
n −πn and ασ

n−αn, respectively, for σ ∈ ΓK , and our task is to relate

their valuations.

In the integral case, we want to show that, for all σ ∈ ΓK ,

v(πσ
n − πn) = v(ασ

n − αn)− (d− 1)v(πn).

Recall that we selected uniformizers πn and units un such that αn = unπ
dn
n . Since the pair

is ramification-stable, dn = d does not vary with n, and we also assumed it is not divisible by p.
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As such, un admits a dth root after at most an unramified extension; the transition function is

insensitive to base change by unramified extensions. In other words, extending Kn−1 and Kn by

their unramified extension of degree d guarantees the presence of d
√
un in our field without affecting

the transition function. So altering our choice of πn, we may write αn = πd
n. This allows us to

directly compare the valuations:

ασ
n − αn = (πσ

n)
d − πd

n (5.13)

=
∏
ζd=1

(πσ
n − ζπn) (5.14)

Of the terms in the product (5.14), we are only interested in v(πσ
n−πn). To manage the others,

notice that

v(πσ
n − ζπn) = v(πn) + v

(
πσ
n

πn
− ζ

)
. (5.15)

If v
(
πσ
n

πn
− ζ

)
is positive, then πσ

n
πn

is necessarily a dth root of unity modulo πn. On the other

hand, the norm from Kn to K of πσ
n

πn
is just 1; but viewed in the residue field, the norm is just

the qth power. Therefore, in the residue field, πσ
n

πn
is both a dth root of unity and a qth root of

unity. Because p ∤ d, this is only possible if ζ = 1. In all other cases, v
(
πσ
n

πn
− ζ

)
= 0. Thus, (5.15)

simplifies to just v(πn) whenever ζ ̸= 1, and so the valuation of (5.14) becomes

v(ασ
n − αn) = v(πσ

n − πn) + (d− 1)v(πn)

or equivalently

v(πσ
n − πn) = v(ασ

n − αn)− (d− 1)v(πn),

which is exactly the statement to which we reduced the main part of this proposition for the integral

case.
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For the non-integral case, i.e. when d is negative, we must replace (5.13) with

1

ασ
n

− 1

αn
= (πσ

n)
|d| − π|d|

n .

The left hand side of the modified (5.13) can be written as

αn − ασ
n

αnασ
n

which has valuation

v(αn − ασ
n)− 2v(αn).

Recall that v(αn) = dv(πn). Making these adjustments to (5.13) and rearranging to move the

2dv(πn) to the right hand side, the remainder of the argument proceeds essentially unchanged until

the end, where incorporating the extra 2dv(πn) gives rise to the sgn(v(α0)) in the statement of the

proposition.

Finally, by inspecting the transformation of coNn into ϕn, one can see that the first and last

slopes of ϕn are
eK/Eqn−1

eK/Eqn = 1
q multiplied by the first and last slopes of coNn. The first and last

slopes of coNn are the first and last x-coordinates of vertices of Nn, which are 1 and q, so together

we see that the first and last slopes of ϕn are 1 and 1
q , as claimed. Likewise, the x-coordinates

can be obtained from the duality of coNn, which turns negative slopes of Nn into x-coordinates of

vertices, then modified according to the first two transformations. □

Remark 4. We use the assumption p ∤ d in two places: to take a dth root of un after a merely

unramified extension, and to control v(πn − ζπn) by using the fact that the dth roots of unity are

distinct modulo p. The former seems to be the greater obstacle to characterizing ramification in

the general case.
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The essence of Proposition 5.10 is that the ramification-theoretic properties of the “small”

intermediate extensions Kn+1/Kn in the branch are somewhat stable. Neglecting scaling, all the

Hasse-Herbrand functions look like a small shift of coNn, and the copolygon itself changes little as

a function of n, in a way which is described very precisely by Proposition 5.7.

The most difficult step would appear to be composing the intermediate Hasse-Herbrand func-

tions ϕ1, ϕ2, ..., ϕn to obtain the Hasse-Herbrand function Φn for Kn/K. However, this is straight-

forward if we can ensure that the ϕn’s behave sufficiently well. Since ϕn is the identity along its

first segment, one might hope that the domain on which it is the identity includes all of the vertices

of the previous Φn−1.

Unfortunately, this is too much to expect in general, but we can give a sufficient condition for

these functions to have sufficiently large identity segments. We can show that both post-critically

bounded polynomials (of the appropriate form) and polynomials of prime degree exhibit this good

behavior with respect to composition of the above Hasse-Herbrand functions.

Proposition 5.11. Suppose (f, α0) is tamely ramification stable.

If the limiting Newton polygon has just one slope, or if

−qmV −mV−1

prV − prV −1
> −m2 −m1

pr2 − pr1
+

2

p− 1
|v(α0)|,

then for all n ≥ 2, the leftmost vertex of ϕn has strictly larger x-coordinate than that of the rightmost

vertex of ϕn−1

The various mi and ri are the quantities given by the limiting ramification data of Definition 5.8.

Proof. By the final statement of Proposition 5.10, we can rewrite the claim about the x-coordinates

of those vertices in terms of the slopes of Nn and Nn−1. We want

−eK/Eq
n(shallowest slope of Nn) + sgn(v(α0))(d− 1)v(α0)
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to be strictly larger than

−eK/Eq
n−1(steepest slope of Nn−1) + sgn(v(α0))(d− 1)v(α0).

For convenience, let’s name the negatives of these slopes: let

s = −(shallowest slope of Nn) s′ = −(steepest slope of Nn−1).

Now we can simplify and rewrite the target inequality as

qs > s′.

When there is just one slope, s = s′ and the inequality obviously holds. Otherwise, there are two

slopes.

Now, the height of the vertex over pri is given by mi + ei
v(α0)
qn . So in expressing the slopes of

the segments between our vertices of interest in these terms, the quantities

t = −mV −mV−1

prV − prV −1
and t′ = −m2 −m1

pr2 − pr1

in the statement of the proposition are the (negative) contributions of the “main terms” to the

slopes s and s′. In light of this interpretation, we can write

s− t =
eV−1 − eV
prB − prV −1

v(α0)

qn
,

s′ − t′ =
e1 − e2
pr2 − pr1

v(α0)

qn−1
.

As was remarked previously, r1 = 0, rV = r and eV = 0, because the first vertex lies over 1, while

the last vertex is (q, 0).

To summarize, the hypothesis of the proposition is

qt > t′ +
2

p− 1
v(α0),
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and we have some s, s′ such that

s− t =
eV−1

q − prV −1

v(α0)

qn
,

s′ − t′ =
e1 − e2
pr2 − 1

v(α0)

qn−1
,

and our goal is

qs > s′.

But then it is enough for our two errors q(s− t) and s′ − t′ to be small enough that their sum

is less than 2
p−1 |v(α0)| in absolute value, as then adding these error terms to the inequality we

initially assumed will preserve the inequality up to the loss of margin of error, 2
p−1 |v(α0)|, that we

allowed ourselves. To prove that the sum of q(s− t) and s′ − t′ is small enough, it suffices to show

that each is at most |v(α0)|
p−1 . And indeed:

|q(s− t)| = q
eV−1

q − prV −1

|v(α0)|
qn

≤ q
q − 1

q − pr−1

|v(α0)|
qn

=

(
1− 1

q

)
· 1

qn−2
· 1

pr−1
· |v(α0)|
p− 1

≤ |v(α0)|
p− 1

,

and

|s′ − t′| = |e1 − e2|
pv2 − 1

|v(α0)|
qn−1

≤ q − 1

p− 1

|v(α0)|
qn−1

<
q − 1

qn−1

|v(α0)|
p− 1s

<
|v(α0)|
p− 1

,
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where, on the second line, we use |e1− e2| ≤ q− 1 rather than ≤ 2(q− 1) because we know that e1

and e2 are both nonnegative. Both inequalities also require that n ≥ 2 so that 1
qn−2 is at most 1. □

Corollary 5.12. Assume the pair is tamely ramification-stable. If f(x) has degree q = p, then it

satisfies Proposition 5.11.

Proof. Immediate, as in this case the limiting Newton polygon only has vertices over 1 and p, hence

it has just a single slope. □

Corollary 5.13. Continue to assume tame ramification-stability. If f is post-critically bounded

and

|v(α0)| <
p− 1

2
v(p),

then the pair (f, α0) satisfies the hypotheses of Proposition 5.11.

Proof. We will verify directly that Proposition 5.11 applies. If the limiting Newton polygon has

just one slope, we are done. Otherwise, assume it has at least two. Then we want to verify that

the following inequality holds:

−qmV −mV−1

prV − prV −1
> −m2 −m1

pr2 − pr1
+

2

p− 1
|v(α0)|. (5.16)

Recall Proposition 5.1, which says that f ′(x)
q has integral coefficients. The first vertex of Nn is

(1, v(f ′(αn)), and so its height is at least v(q) = rv(p). Moreover, from Lemma 5.2(ii), we know

that the height drop between vertices over ps and pu is at most (u− s)v(p); in our notation,

−(mi −mj) ≤ (ri − rj)v(p) for i ≥ j. (5.17)

Recall as well that r1 = 0 and rV = r.
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Working with the right hand side of (5.16),

−m2 −m1

pr2 − pr1
+

2

p− 1
|v(α0)| = −

m2 −m1

pr2 − 1
+

2

p− 1
|v(α0)|

≤ r2v(p)

pr2 − 1
+

2

p− 1
|v(α0)| apply (5.17)

<
v(p)

p− 1
+

2

p− 1
|v(α0)|

<
v(p)

p− 1
+ v(p) apply the assumption|v(α0)| <

p− 1

2
v(p)

=
p

p− 1
v(p). (5.18)

Now, let us treat the left hand side of (5.16). Recall that rV = r and mV = 0, so

−(mV −mV−1) = mV−1.

At the same time, the first vertex has height at least pr and the decrease in height from the first

vertex to the V − 1st vertex is at most (rV−1 − 1)v(p) ≥ rV−1v(p), and therefore

mV ≥ (r − rV−1)v(p)

Applying this to the left hand side of (5.16), we see:

−qmV −mV−1

prV − prV −1
≥ pr

(r − rV−1)v(p)

pr − prV −1

≥ r − rV−1

1− prV −1−r
v(p) (5.19)

≥ p

p− 1
v(p). (5.20)

Going from (5.19) to (5.20) is slightly tricky; if rV−1 = r − 1 then the two are equal, while

if rV−1 < 1 then in the fraction term of (5.19), the numerator (r − rV−1) is at least 2 and the

denominator (1−prV −1−r) is at most 1, hence the whole quantity is at least 2v(p) ≥ p
p−1v(p) (sharp

when p = 2).
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Combining (5.18) and (5.20) yields the desired inequality (5.16).

□

Remark 5. Notably, when p ≥ 5, the inequality in Proposition 5.11 is always satisfied for v(α0) = 1.

It still remains to compose our Hasse-Herbrand functions. The conclusion of Proposition 5.11

describes the “good behavior” that we want in order for the Hasse-Herbrand functions to compose

well: the first vertex of ϕn should have larger x-coordinate than the last vertex of ϕn−1. When

this happens, the higher ramification behavior of the branch is quite well-controlled and highly

regular. Explicit examples show that this happens in many situations besides those described by

Proposition 5.11 or Corollaries 5.12 and 5.13. This leads us to introduce the following definition:

Definition 5.14. A tamely ramification-stable branch associated to f and α0 over K is said to be

strictly tamely ramification-stable if it also satisfies the conclusions of Proposition 5.10 and 5.11.

Namely, the Hasse-Herbrand functions of the intermediate extensions Kn/Kn−1 should have the

shape specified by the conclusion of Proposition 5.10 and the x-coordinates of the first and last ver-

tices of coNn and coNn−1 should be positioned, relative to each other, according to the conclusion

of 5.11.

A branch is said to be potentially strictly tamely ramification-stable if there is some N

such that upon replacing K by KN and re-indexing the branch to be based at αN it is tamely

ramification-stable.

Remark 6. In our definition, “tamely” refers to the restriction that p ∤ d. We expect that even

if p|d, such branch extensions would still exhibit this kind of ramification stability. However, the

precise expressions given in Proposition 5.10, particularly the (d− 1)v(πn) term, may not correctly

describe these cases.
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Proposition 5.15. Suppose that p ∤ d. If f(x) has prime degree or is post-critically bounded, then

any branch associated to f(x) is potentially strictly tamely ramification-stable.

Proof. Lemma 2.12 and Proposition 5.7 ensure that for all sufficiently largeN , the pair is ramification-

stable when K is replaced by KN and the branch is modified to start at αN .

For polynomials of prime degree and post-critically bounded polynomials, Corollaries 5.12

and 5.13, respectively, prove that any branch satisfies the conclusion of Proposition 5.11 after

possibly increasing N , hence is strictly ramification-stable. We have already assumed p ∤ d, from

which tameness follows. □

From the proof of Proposition 5.11, we know that if p ∤ d, a branch is potentially strictly tamely

ramification stable when, roughly, the first (steepest) slope of Nn−1 is not more than q times steeper

than the last (shallowest) slope of Nn. This property depends only on f(x), not the branch. For it

to fail, the first vertex of Nn must be relatively high compared to the others, which seems unlikely

based on the structure of the minima that describe the heights of these vertices.

Before proceeding, recall the following definition:

Definition 5.16 ([22]). The altitude of an extension E/K with transition function Ψ(x) is the

height of the rightmost vertex of Ψ(x); at times we may abbreviate this as the altitude of Ψ(x).

Proposition 5.17. Suppose our branch, associated to (f, α0), is strictly tamely ramification-stable

over K. Let V be the number of vertices from the limiting ramification data.

Then the Hasse-Herbrand transition function Φn(x) for Kn/K is a piecewise linear function

which satisfies the following properties:

1. Φn(x) has (V − 1)n vertices,
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2. the last (rightmost) vertex of Φn(x) has the same x-coordinate as the last vertex of ϕn,

3. the final slope (of the ray extending rightward from the last vertex) of Φn(x) is 1/qn,

4. Φn(x) coincides with Φn−1(x) for x smaller than the last coordinate of Φn−1,

5. the altitude of Φn(x) is strictly greater than the altitude of Φn−1 and is unbounded as a

function of n.

Proof. By transitivity, Φn(x) = Φn−1 ◦ ϕn(x), so it is natural to proceed by induction. The base

case is Φ1 = ϕ1, where there is nothing to prove: the shape of this function has been described

explicitly already and satisfies all of the above conditions.

The first vertex of ϕn(x) is after the last vertex of Φn−1(x), and ϕn(x) is the identity up to its

first vertex, so property (4) follows. The x-coordinate of the last vertex of ϕn(x) is after that of

the last vertex of Φn−1(x), and so it remains the x-coordinate of the last vertex of Φn(x), verifying

property (2). Moreover, after that point, we add V − 1 new vertices, from those of ϕn, yielding (1).

The final segment of ϕn corresponds to the final vertex (q, 0) of Nn, and hence has slope 1
q . By

inspection, the final slope of Φn is the product of the final slope of Φn−1, which is 1
qn−1 , and the

final slope of ϕn, which is 1
q , so together the final slope is 1

qn , which is (3).

Finally, the altitude is the height of the last vertex of Φn(x), which lies over the last vertex of ϕn.

By Proposition 5.10 combined with the limiting ramification data, we can express the x-coordinates

of the last vertices of Φn and Φn−1 as

Aqn +B and Aqn−1 +B,

respectively, where A and B are positive constants which do not depend on n. The constant A

comes from the part of the slope associated to the main terms, while B comes from the error terms
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plus the shift by sgn(v(α0))(d− 1)v(πn), and both incorporate the scaling by eK/E .

Between these two vertices, the slopes of Φn(x) must be at least p
qn because the last (shallowest)

slope is 1
qn and the slopes are all powers of p. Then we can estimate the difference in altitudes as

follows

altitude(Φn)− altitude(Φn−1) ≥
p

qn

(
Aqn +B − (Aqn−1 +B)

)
≥ Ap

(
1− 1

q

)
.

Thus the gap between consecutive altitudes is bounded below by a positive constant which does

not depend on n, and so the altitudes are unbounded as n grows. □

With these preliminaries, our main theorem falls readily into place:

Theorem 5.18. Suppose our branch, associated to the polynomial f(x) and base point α0, is strictly

tamely ramification-stable over K. Then K∞/K is arithmetically profinite, and there is a constant

V such that for all n,

Kn = K((V−1)n+1)
∞ .

Proof. We first show that K∞/K is arithmetically profinite. As explained in Wintenberger [41],

we simply need a filtration of elementary extensions whose altitudes tend to infinity. Because

Φn restricts to Φn−1, the elementary subextensions of Kn inside Kn−1 are all of the elementary

subextensions of Kn−1, which gives us our tower. The altitude of Kn tends to infinity by Propo-

sition 5.17, hence the heights of these elementary subextensions do as well. From this we see that

the extension is arithmetically profinite, and that its Hasse-Herbrand function Φ(x) is given by the

pointwise limit of the intermediate Hasse-Herbrand functions Φn(x). Further, by Proposition 5.17,

Φn(x) coincides with Φn−1(x) up to the last vertex of Φn−1(x), and so the same holds for Φ(x):

whenever x is smaller than the x-coordinate of the last vertex of Φn(x), we have Φ(x) = Φn(x).
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The altitude of Kn over K is the same as the height of the (V −1)nth vertex of Φ, again by our

assumption that the branch is strictly tamely ramification-stable. That altitude is strictly less than

the height of the ((V − 1)n+ 1)th vertex of Φ, and so Kn ⊆ K
((V−1)n+1)
∞ . On the other hand, the

final slope of Φn(x) is
1
qn , by Proposition 5.17. Since Φ(x) = Φn(x) up to the the ((V − 1)N +1)th

vertex, this is the same as the slope of Φ(x) going into the ((V − 1)N + 1)th vertex, so the degree

of K
((V−1)n+1)
∞ over K is qn, which is the same as the degree of Kn over K. Thus the two fields

are equal, as claimed. □

Corollary 5.19. Let P (x) be a polynomial which either has degree p, or is post-critically bounded

and has degree pr. Take any nontrivial branch for P (x), and suppose p does not divide the constant

d associated to the branch. Then the dynamical branch extension K∞/K is arithmetically profinite,

and there are constants N and V such that after replacing K by KN ,

Kn = K((V−1)(n−N)+1)
∞ ,

for all n.

Proof. If f(x) has prime degree or is post-critically bounded and p ∤ d, then any nontrivial branch

associated to it is potentially strictly tamely ramification-stable by Proposition 5.15. Recall that

this means that there is an N such that after restricting our branch to start at αN it is strictly

tamely ramification-stable over KN .

To keep our indexing clear, set

βn = αN+n, L = K(αN ), Ln = L(βn), L∞ =
⋃

Ln.

By definition, L∞ = K∞. Then our main result, Theorem 5.18, applies to this branch, and so
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K∞ = L∞ as an extension of L = KN is arithmetically profinite and

Ln = L((V−1)n+1)
∞ .

Translating from L to K, we see that Kn = Ln−N if n ≥ N . So making this change of index,

we see that

Kn = Ln−N = L((V−1)(n−N)+1)
∞

for n ≥ N , for the upper numbering relative to L = KN . When n < N , ((V − 1)(n − N) + 1) is

negative, which is handled by our convention for negative-indexed elementary subfields, that they

are simply the ground field. Thus replacing K by KN yields the claimed statement for all n. □

5.6 Applications and Effectivity

5.6.1 A question of Berger.

As our first application, we can offer a partial answer to a question raised by Berger [8]. That paper

considers extensions of the same type studied here, though with two restrictions: the degree is the

size of the residue field, and the base point is a uniformizer. An important intermediate result of

that paper is the implication

K∞/K Galois ⇒ K∞/K abelian.

Berger asks if there is a more direct or elementary proof of this fact: the two proofs we are aware

of, due to Berger [9] and Cais-Davis [11], use quite sophisticated machinery. Our results allow us

to give such an elementary proof in some cases.

Let us outline Berger’s use of this fact: if K∞/K is abelian, then Kn/K is also abelian, and

in particular normal. When Kn/K is normal and the degree of Kn/Kn−1 is q, one can define, for
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each σ ∈ ΓK , a power series Colσ ∈ K[[T ]] such that Colσ(0) = 0 and Colσ(αn) = ασ
n (generalized

Coleman power series). This power series commutes with f , and so by a result of Lubin [24],

that power series is determined by the coefficient of its linear term, which gives a character from

ΓK to O∗
K . This character is injective, because the action on the branch determines the action

everywhere in the extension, since the branch generates the extension. Berger then goes on to

study this character in detail.

But the logic flows the other way too: if we know that Kn/K is normal for some other reason,

then we can construct these power series and the associated injective character, which would prove

that K∞/K is abelian. And indeed, the elementary subfields of K∞ over K are all normal over K

if K∞/K is normal. Thus if one were to know that for all n there exists an m such that Kn = K
(m)
∞

for some m, as in our main theorem, then K∞/K must be abelian.

Theorem 5.20. Assume p is odd. Suppose α0 is a uniformizer for K, f ′(0) is nonzero, and we

are given a branch associated to f(x) and α0 which is tamely ramification-stable.

If K∞/K is Galois, it is also abelian.

Proof. Because α0 is a uniformizer, all of the polynomials fn(x) − α0 are Eisenstein, so they are

irreducible and give rise to a totally ramified extension of degree qn. This means that d = 1 and

that [Kn : Kn−1] = q for all n.

The branch is strictly tamely ramification-stable, so we may apply Theorem 5.18, to conclude

that for all n, the extensionKn/K is elementary, and therefore also Galois becauseK∞/K is Galois.

Now let σ ∈ Gal(K∞/K). Because Kn/K is normal, ασ
n is in Kn = K(αn). The sequence

(ασ
n)n∈N is itself a branch, and by our assumption that p is odd and the irreducibility of f(x)−αn−1,

we see thatNKn
Kn−1

(αn) = αn−1. This means that we can use Berger’s construction ([8, Theorem 3.1])
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to produce a uniquely determined series Colσ ∈ OK [[T ]] which acts by Colσ(αn) = ασ
n and commutes

with f(x). This gives rise to a character χ from Gal(K∞/K) to O∗
K given by χ(σ) = Col′σ(0).

Since Colσ commutes with f(x) and f ′(0) is neither zero nor a root of unity, the series Colσ is

determined by Col′σ(0) by Proposition 1.1 of Lubin [24]. Since Colσ also determines the action of

σ on αn, and hence on the whole extension K∞, the character χ is injective. Since Gal(K∞/K)

embeds into an abelian group, it is itself abelian. □

Corollary 5.21. Assume p is odd. Suppose α0 is a uniformizer for K, f ′(0) is nonzero, and we

are given a branch associated to f(x) and α0 which is potentially strictly tamely ramification-stable.

If K∞/K is Galois, it has a finite-index abelian subgroup.

Proof. Select N such that the branch is strictly tamely ramification-stable over KN . Since it is

still the case that the polynomials fn(x) − α0 are Eisenstein, the new base point αN remains a

uniformizer. Therefore, Theorem 5.20 applies over this larger field, and hence Gal(K∞/KN ) is

abelian. Its index in Gal(K∞/K) is exactly qN . □

We cannot relax the assumption that α0 is a uniformizer, as this is crucial to Berger’s construc-

tion of the Coleman power series. Moreover, the fact that α0 is a uniformizer means that every αn

will also be a uniformizer of the field it generates over K, and so d = 1 for any branch based at α0.

As a result, whether or not the branch is potentially strictly tamely ramification-stable depends

entirely on f(x).

Theorem 5.20 is not vacuous; there are strictly tamely ramification-stable branches associated

to Galois extensions. For example, it is straightforward to check that Berger’s example (Theo-

rem 6.5 [8])

f(x) = x3 + 6x2 + 9x, α0 = −3, K = Q3
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satisfies Theorem 5.20 by combining our observation that d = 1 with the effective results of Sec-

tion 5.6.3.

In fact, because d = 1 and the polynomial in question has prime degree, the branch is guaran-

teed to be potentially strictly tamely ramification-stable, so we could have applied Corollary 5.21,

without making any calculations, to determine that the Galois group has a large abelian subgroup

(applying our effective results, one can see that this would have provenK∞/K1 is abelian). This can

be done for many other examples involving a post-critically bounded or prime degree polynomial.

5.6.2 A question about wild ramification in arboreal extensions.

Both Aitken, Hajir, and Maire [1, Question 7.1] and Bridy, Ingram, Jones, Juul, Levy, Manes,

Rubinstein-Salzedo, and Silverman [10, Conjecture 6] raise questions about wild ramification in

arboreal extensions. Namely: are there arboreal extensions over number fields which are ramified

at only finitely many primes but not wildly ramified?

We answer this negatively for all arboreal extensions associated to polynomials of prime-power

degree. Under some restrictions on the base point, we can also show that such arboreal exten-

sions are not only infinitely wildly ramified, but that all of their higher ramification subgroups

are nontrivial. For the latter, we do not need the full strength of our results, only that K∞/K

is arithmetically profinite (which, for certain base points, already follows from Cais, Davis, and

Lubin [12]).

Theorem 5.22. Let F be a number field and p a prime of F lying over a rational prime p. Let

P (x) ∈ OF [x] be a monic polynomial of degree pr such that f(x) ≡ xp
r

mod p, and let α0 ∈ F .

Then the arboreal representation associated to f(x) and α0 is infinitely wildly ramified.

If, further, f(x) has prime degree and v(α0) ̸= 0, or is post-critically bounded with no restriction
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on vp(α0), and there is a branch over α0 whose associated constant d is not divisible by p, then

every higher ramification subgroup over p of the arboreal representation is nontrivial.

Proof. It suffices to work over the completion K of F at a prime lying over p, and we may also take

finite extensions of the ground field as necessary. Iteration and conjugation of PCB polynomials

are PCB, so we may replace f(x) by some conjugate iterate of itself, which allows us to modify its

degree and ensure it fixes 0. So by Proposition 5.1 we may assume that in addition to being monic,

f(x) has integral coefficients, and fixes 0. Replacing f(x) by fs(x) for a sufficiently large integer s,

we may assume that the size of the residue field of K divides the degree of f(x).

Recall that our results require v(α0) ̸= 0. If v(α0) = 0, then after possibly extending F , we

will conjugate by a translation to make its valuation positive. In particular, f(x) has a fixed point

congruent to α0 modulo πK , because

f(x)− x ≡ xp
r − x mod πK ,

and the size of the residue field divides pr, so that every element of the residue field is a zero of

f(x)− x modulo πK . Let α be such a fixed point, then replace f(x) by its conjugate by x 7→ x−α

and α0 by α0 − α.

This leaves us with a final pair (f(x), α0) where v(α0) ̸= 0. It follows from Lemma 2.12 that

(every) branch extension K∞/K is infinitely wildly ramified, hence the full arboreal extension

Karb/K is also infinitely wildly ramified.

Because being post-critically bounded is conjugation and composition invariant, we may always

assume when f(x) is post-critically bounded that vp(α0) ̸= 0.

We can say more if f(x) has prime degree with vp(α0) ̸= 0 or f(x) is post-critically bounded

and vp(α0) ̸= 0, and there is a branch such that p ∤ d, as then Corollary 5.19 applies: there is an N
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such that after replacing K by KN ,

Kn = K((V−1)(n−N)+1)
∞ .

Those are the subfields of K∞ fixed by Γ
b(V −1)(n−N)+1

K . The branch extension K∞/K is con-

tained in the full arboreal extension Karb/K, which, combined with the functoriality of the upper

numbering, means Kn is the subfield of K∞/K that is fixed by the subgroup Γ
b(V −1)(n−N)+1

arb . But

the fields Kn are all distinct, and hence the subgroups which fix them must all be distinct too.

Finally, it was shown that the ramification breaks b(V−1)(n−N)+1 are unbounded as a function of n,

and so every upper-numbered higher ramification subgroup of Γarb is nontrivial. □

Observation. Bridy, Ingram, Jones, Juul, Levy, Manes, Rubinstein-Salzedo, and Silverman [10]

showed that a finitely ramified arboreal extension over a number field necessarily comes from a post-

critically finite, and hence post-critically bounded map. This means that the preceding theorem

applies as soon as one checks that p does not divide d (the stronger case, without restricting vp(α0)

because the map is PCB).

The theorem tells us that, at least in some cases, the higher ramification subgroups of Γarb are

all nontrivial, so we are led to wonder how large or small these subgroups might be. In particular,

is Karb/K arithmetically profinite? We suspect not, and conjecture that if there is no branch such

that K∞/K is Galois, then the wild ramification subgroup has infinite index inside Γarb (in other

words, the tame part of K∞/K has infinite degree over K). However, it seems plausible that this

could be the only obstacle to the extension being arithmetically profinite: is it the case that for

any 1 < µ < ν, the index [Γµ
arb : Γ

ν
arb] is finite?
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5.6.3 Effective results; calculating limiting ramification data.

Every proof in this chapter, culminating in Corollary 5.19 is effective, and in practice straight-

forward to compute. Here we sketch the computation of most of the limiting ramification data

(Definition 5.8). An implementation in SageMath [31] is available upon request. The only ineffec-

tive – but crucial – step made to obtain our results occured in Lemma 2.12. The determination of

“sufficiently large” to ensure that (b) and (c) of this proposition are satisfied is not effective. This

also means that the value d = limn→∞ dn is not effective. Knowing that p does not divide d is an

important input to our main results, so from a computational perspective, this is a particularly

unfortunate limitation.

However, if d is known, then all of our constants are effective. For example: if α0 is a uniformizer,

such as in the previous section, then fn(x) − α0 is Eisenstein, so αn is also a uniformizer, and so

d = 1 and the pair is immediately tamely ramification-stable at the first level.

Calculating V , R, M , and E.

We begin with the computation of V , R, M , and E: the number of vertices, the (logarithm of) the

x-coordinates of the vertices, and the main and error terms describing the heights of the vertices.

Interestingly, these depend only on the valuations of the coefficients of f(x) and on the sign of the

valuation of α0. They do not depend on the choice of branch.

All of the following steps can be extracted readily from the proof of Proposition 5.7. Roughly,

the proposition tells us that when v(αn) is small, we can drop the small error terms that show up

in the minimum defining the Newton polygon Nn as long as we carefully track which terms achieve

that minimum.
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Step 1. For each 0 ≤ k ≤ r, compute the minimum

Mpk = min
pk≤j≤q

{
v

(
j

pk

)
+ v(fj)

}
. (5.21)

Step 2. For each 0 ≤ k ≤ r: if v(α0) is positive (resp. negative), let j be the first (resp. last)

index achieving the minimum (5.21) which defines Mpk . Then set

Epk = j − pk.

Step 3. Let N be the lower convex hull of the following vertices:

{(
pk,Mpk + Epk

1

q2

)
: 0 ≤ k ≤ r

}
.

The division by q2 is arbitrary - any larger power of q will work as well. This polygon is an

approximation to the polygons Nn that is precise enough to contain all the limiting ramification

data. It is important that the error term is still present, because it can contribute vertices to the

Newton polygons even though its contribution decreases rapidly. Degenerating all the way to the

convex hull of the points (pk,Mpk) will lose this crucial information.

Step 4. Let V be the number of vertices of the polygon N , and write the x-coordinates of the

vertices of N as pr1 , ..., prV . Then the limiting ramification data is:

V (P, α0) = V

R(P, α0) = (r1, ..., rV )

M(P, α0) = (m1, ...,mV )

E(P, α0) = (e1, ..., eV )

(recall mi = Mpri , likewise ei = Epri ).
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Calculating C.

The constant C = limn→∞ qnv(αn) is essentially valuation of αn with respect to a valuation nor-

malized for Kn. This constant requires slightly more information to calculate. Unlike V , R, M ,

and E, this constant depends on the branch. However, the dependence is weaker than one might

expect.

Proposition 5.23. If α0 ̸= 0 and the valuation of the base point v(α0) is fixed, then there is a

constant N which is uniform among all branches such that C = qNv(αN ). In fact, the constant N

depends only on the degree of f .

Assuming α0 ̸= 0, then we can give an explicit upper bound for the constant N : if v(α0) = 0,

then we may take N = 0, and if v(α0) > 0 then we may take N = v(α0).

If α0 = 0, but we truncate all branches to remove their leading zeros, there is such a constant

N , which now depends on the valuations of the coefficients of f . In this case, let k be the number

of leading zeros in the branch and let ℓ = max{v(fj)}. Then we may take N = k + ℓ.

Proof. The claims follow from a closer inspection of the proof of Lemma 2.12. The lemma guarantees

that there is an N such that the constant C is given by qNv(αN ); a priori this N depends on the

branch, but we will show it does not. If v(α0) < 0 then we are immediately done with N = 0.

If α0 ̸= 0, then the decrease in valuation is partly controlled by the following estimate:

v(αn) ≤ max{v(αn−1)− 1, v(αn−1)/2}.

In the maximum, it is easy to see that

v(αn−1)− 1 ≤ v(αn−1)/2
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if and only if

v(αn−1) ≤ 2,

and when that occurs, it must be that v(αn) ≤ 1. So after N = v(α0) steps, we are guaranteed to

be in a situation where Lemma 2.12(a) applies, and hence C = qNv(αN ).

Otherwise, α0 = 0. Let k be the number of leading 0s in the branch, which means αk ̸= 0 and

αk−1 = 0, and by inspecting the Newton polygon of f(x) − αk−1 = f(x), a generous bound for

v(αk) is ℓ = max{v(Pj)}, as long as α1 ̸= 0. Then we may apply our reasoning for the case α0 ̸= 0,

but with αk in place of α0 to see that

C = qk+ℓv(αk+ℓ).

□

With 5.23, we can explicitly determine a value N depending (mildly) on the branch and f such

that C = qNv(αn).

Sample calculation.

In any particular case, it is mostly straightforward to check that a pair is tamely ramification-stable,

except for the tameness component, since we do not have an effective way to compute d. However,

it is possible to do so in some cases.

The following example is small enough that we can carry out the calculation by hand.

Let K = E = Q3(
√
3) with valuation v normalized so that v(

√
3) = 1. Consider the polynomial

f(x) = x9 + 12
√
3x7 + 18x6 + 3

√
3x4 +

3

5
x3 + 9x,

with any branch whose initial sequence of valuations looks like (4, 2/3, 2/27, ...).
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We readily obtain our effective constants:

V = 3,

R = (0, 1, 2),

M = (3, 2, 0),

E = (3, 0, 0).

as well as

C = 94v(α4) = 94 · 2
3
· 1
93

= 6.

Inspecting the first few levels of such a branch in Sage, we see that our sequence dn looks like

4, 2, 2, ..., hence d = 2, which is not divisible by p = 3. To be more precise, while the value N from

Lemma 2.12 is not effectively determined, we can see from the proof that as soon as some dn is

not divisible by p and v(αn) < 1, we have reached a suitable index. This is because at each step

there is no way for the valuation to decrease by a factor of q without the ramification index being q

as well. Combined with this limiting ramification data, one can see directly that (f, α1) is tamely

ramification-stable. Therefore, when we replace K by K1, we may apply Theorem 5.18 to obtain

Kn = K((V−1)(n−1)+1)
∞ .

So, even though f(x) is not prime degree or post-critically bounded, it is an example of a

polynomial whose branch extensions are amenable to study by our methods.
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